Translational research : the journal of laboratory and clinical medicine
-
The alveolar-capillary membrane serves as a barrier that prevents the accumulation of fluid in the alveolar space and restricts the diffusion of large solutes while facilitating an efficient gas exchange. When this barrier becomes dysfunctional, patients develop acute lung injury (ALI), which is characterized by pulmonary edema and increased lung inflammation that leads to a life-threatening impairment of gas exchange. In addition to the increase of inflammatory cytokines, plasma levels of endothelin-1 (ET-1), which is a primarily endothelium-derived vasoconstrictor, are increased in patients with ALI. ⋯ AFC involves active transport mechanisms where sodium (Na(+)) is actively transported from the alveolar airspaces, across the alveolar epithelium, and into the pulmonary circulation, which creates an osmotic gradient that is responsible for the clearance of lung edema. In this article, we review the relevance of ET-1 in the development of ALI, not only as a vasoconstrictor molecule but also by inhibiting AFC via the activation of endothelial ET-B receptors and generation. Furthermore, this review highlights the therapeutic role of drugs such as beta-adrenergic agonists and, in particular, of endothelin receptor antagonists in patients with ALI.
-
The levels of circulating oxidized phospholipids (OxPLs) become increased in chronic and acute pathologic conditions such as hyperlipidemia, atherosclerosis, increased intimamedia thickness in the patients with systemic Lupus erythematosus, vascular balloon injury, acute lung injury (ALI), and acute respiratory distress syndrome (ARDS). These pathologies are associated with inflammation and activation of endothelial cells. ⋯ Recent reports show protective effects of OxPL in the models of endotoxin and ventilator-induced ALI and suggest a potential for using OxPL-derived cyclopenthenone-containing compounds with barrier-protective properties for drug design. These compounds may represent a new group of therapeutic agents for the treatment of lung syndromes associated with acute inflammation and lung vascular leak.
-
Asbestos causes asbestosis (pulmonary fibrosis caused by asbestos inhalation) and malignancies (bronchogenic carcinoma and mesothelioma) by mechanisms that are not fully elucidated. Despite a dramatic reduction in asbestos use worldwide, asbestos-induced lung diseases remain a substantial health concern primarily because of the vast amounts of fibers that have been mined, processed, and used during the 20th century combined with the long latency period of up to 40 years between exposure and disease presentation. This review summarizes the important new epidemiologic and pathogenic information that has emerged over the past several years. ⋯ Furthermore, recent evidence underscores crucial roles for specific cellular signaling pathways that regulate the production of cytokines and growth factors. An evolving role for epithelial-mesenchymal transition (EMT) is also reviewed. The translational significance of these studies is evident in providing the molecular basis for developing novel therapeutic strategies for asbestos-related lung diseases and, importantly, other pulmonary diseases, such as interstitial pulmonary fibrosis and lung cancer.
-
The well-accepted biopsychosocial model proposes that the experience of pain and responses to it result from a complex interaction of biological, psychological, and social factors. However, the separation of these constructs is substantially artificial, and we presume that psychological processes have biological effects, that biological processes affect an individual's psychosocial environment, and so on. Considerable research has demonstrated that pain-coping strategies influence perceived pain intensity and physical functioning, and individual differences in styles of pain coping even shape the persistence of long-term pain complaints in some populations. ⋯ Although catastrophic thinking regarding pain-related symptoms is often classified under the "psychologic" category within the broader biopsychosocial model, we propose that catastrophizing exerts biologic effects that may account for some of its negative consequences. In general, the cognitive and affective processes captured within the construct of catastrophizing may exert effects on the neuromuscular, cardiovascular, immune, and neuroendocrine systems, and on the activity in the pain neuromatrix within the brain. The interface between pain-related neurobiology and processes such as pain-related catastrophizing represents an important avenue for future pain research.
-
The integration of molecular, genomic, and clinical medicine in the post-genome era provides the promise of novel information on genetic variation and pathophysiologic cascades. The current challenge is to translate these discoveries rapidly into viable biomarkers that identify susceptible populations and into the development of precisely targeted therapies. ⋯ Our search for candidate genes, which are gene variations that drive susceptibility to and severity of enigmatic acute and chronic lung disorders, provides a logical framework to understand better the evolution of genomic medicine. The dissection of the genetic basis of complex diseases and the development of highly individualized therapies remain lofty but achievable goals.