Translational research : the journal of laboratory and clinical medicine
-
The symbiotic relationships shared between humans and their gastrointestinal parasites present opportunities to discover novel therapies for inflammatory diseases. A prime example of this phenomenon is the interaction of humans and roundworms such as the hookworm, Necator americanus. Epidemiological observations, animal studies and clinical trials using experimental human hookworm infection show that hookworms can suppress inflammation in a safe and well-tolerated way, and that the key to their immunomodulatory properties lies within their secreted proteome. ⋯ Next generation sequencing of colon tissue in the T-cell transfer model of colitis revealed that Na-AIP-1 induced a transcriptomic profile associated with the downregulation of metabolic and signaling pathways involved in type-1 inflammation, notably TNF. Finally, co-culture of Na-AIP-1 with a human monocyte-derived M1 macrophage cell line resulted in significantly reduced secretion of TNF. Na-AIP-1 is now a candidate for clinical development as a novel therapeutic for the treatment of human inflammatory bowel diseases.
-
This study was aimed at generating and investigating the efficacy of a novel monoclonal bispecific antibody (BsAb) for the combined inhibition of tumor necrosis factor-α (TNF-α) and CXCL10 as a treatment option for rheumatoid arthritis (RA). A novel BsAb targeting TNF-α and CXCL10 was generated by conjugating a single-chain variable fragment (scFv) of the anti-CXCL10 monoclonal antibody to the Fc region of adalimumab (ADA). The effects of the BsAb on the inflammatory response in the in vitro and in vivo development of arthritis and joint destruction were evaluated in human TNF transgenic (hTNF-Tg) mice, and K/BxN serum transfer arthritis models. ⋯ In the K/BxN serum transfer model, BsAb effectively attenuated ankle swelling, synovial inflammation, cartilage damage, and bone destruction, reducing the activation of osteoclasts. The additional neutralization of TNF-α and CXCL10 from treatment with the novel BsAb was more effective than TNF-α inhibition alone in the in vitro and in vivo models of RA. Thus, the BsAb, targeting both TNF-α and CXCL10, may provide a new therapeutic opportunity for RA patients who fail to respond to the blockade of a single cytokine.
-
Although interest in "cytokine storms" has surged over the past decade, it was massively amplified in 2020 when it was suggested that a subset of patients with COVID-19 developed a form of cytokine storm. The concept of cytokine storm syndromes (CSS) encompasses diverse conditions or circumstances that coalesce around potentially lethal hyperinflammation with hemodynamic compromise and multiple organ dysfunction syndrome. Macrophage activation syndrome (MAS) is a prototypic form of CSS that develops in the context of rheumatic diseases, particularly systemic juvenile idiopathic arthritis. ⋯ Physicians immediately grappled with identifying optimal therapeutic strategies for these patients, and despite clinical distinctions such as marked coagulopathy with endothelial injury associated with COVID-19, borrowed from the experiences with MAS and other CSS. Initial reports of patients treated with anti-cytokine agents in COVID-19 were promising, but recent large, better-controlled studies of these agents have had mixed results suggesting a more complex pathophysiology. Here, we discuss how the comparison of clinical features, immunologic parameters and therapeutic response data between MAS and hyperinflammation in COVID-19 can provide new insight into the pathophysiology of CSS.
-
As the world navigates the coronavirus disease 2019 (COVID-19) pandemic, there is a growing need to assess its impact in patients with autoimmune rheumatic diseases, such as systemic lupus erythematosus (SLE). Patients with SLE are a unique population when considering the risk of contracting COVID-19 and infection outcomes. ⋯ Other immunopathogenic mechanisms of SLE may overlap with those described in COVID-19, thus, studies in SLE could provide some insight into immune responses occurring in severe cases of the viral infection. We reviewed the literature to date on COVID-19 in patients with SLE and provide an in-depth review of current research in the area, including immune pathway activation, epidemiology, clinical features, outcomes, and the psychosocial impact of the pandemic in those with autoimmune disease.
-
Approximately 15%-20% of patients infected with SARS-CoV-2 coronavirus (COVID-19) progress beyond mild and self-limited disease to require supplemental oxygen for severe pneumonia; 5% of COVID-19-infected patients further develop acute respiratory distress syndrome (ARDS) and multiorgan failure. Despite mortality rates surpassing 40%, key insights into COVID-19-induced ARDS pathology have not been fully elucidated and multiple unmet needs remain. ⋯ We review unmet needs persisting in COVID-19-induced ARDS in the context of the potential role for damage-associated molecular pattern proteins in lung and systemic hyperinflammatory host responses to SARS-CoV-2 infection that ultimately drive multiorgan dysfunction and ARDS mortality. Insights into promising stratification-enhancing, biomarker-based strategies in COVID-19 and non-COVID ARDS may enable the design of successful clinical trials of promising therapies.