Translational research : the journal of laboratory and clinical medicine
-
The Proprotein Convertase Subtilisin Kexin of type 9 (PCSK9) has been identified in 2003 as the third gene involved in familial hypercholesterolemia. PCSK9 binds to the membrane low-density lipoprotein receptor (LDLR) and promotes its cellular internalization and lysosomal degradation. Beyond this canonical role, PCSK9 was recently described to be involved in several immune responses. ⋯ Interestingly, the protective effect of PCSK9 inhibition against food allergy symptoms was independent of the LDLR as PCSK9 inhibitors remained effective in Ldlr deficient mice. In vitro, we showed that recombinant gain of function PCSK9 (PCSK9 D374Y) increased the percentage of mature bone marrow derived dendritic cells (BMDCs), promoted naïve T cell proliferation and potentiated the gliadin induced basophils degranulation. Altogether, our data demonstrate that PCSK9 inhibition is protective against gliadin induced food allergy in a LDLR-independent manner.
-
This study investigates the role of dendritic cells (DCs), with a focus on their CXCL10 marker gene, in the activation of cytotoxic T lymphocytes (CTLs) within the ovarian cancer microenvironment and its impact on disease progression. Utilizing scRNA-seq data and immune infiltration analysis, we identified a diminished DC presence in ovarian cancer. Gene analysis pinpointed CXCL10 as a key regulator in OV progression via its influence on DCs and CTLs. ⋯ Experimental studies using animal models have provided further evidence that the capacity of CTLs to suppress tumor development is significantly diminished when treated with DCs that have low expression of CXCL10. Dendritic cell-derived CXCL10 emerges as a pivotal factor in restraining ovarian cancer growth and metastasis through the activation of cytotoxic T lymphocytes. This study sheds light on the crucial interplay within the ovarian cancer microenvironment, offering potential therapeutic targets for ovarian cancer treatment.
-
Hepatic ischemia reperfusion (I/R) injury is a common clinical complication. X-box binding protein 1 (XBP1), as a critical regulator of the endoplasmic reticulum stress, has been implicated in a variety of diseases. In this study, we aimed to investigate the effects and the underlying mechanism of XBP1 in the progression of hepatic I/R injury. ⋯ Targeting XBP1 by genetic or pharmacological techniques potentiated the protein levels of FoxO1, further promoting the activity of the PINK1/Parkin signaling pathway, thus augmenting mitophagy and exerting hepatoprotective effects upon I/R injury. In conclusion, the inhibition of XBP1 potentiated FoxO1-mediated mitophagy in hepatic I/R injury. Specific genetic and pharmacological treatment targeting XBP1 in the perioperative 6 h prior to reperfusion exerted beneficial effects, thus providing a novel therapeutic approach.
-
Arginine methylation, a vital post-translational modification, plays a pivotal role in numerous cellular functions such as signal transduction, DNA damage response and repair, regulation of gene transcription, mRNA splicing, and protein interactions. Central to this modification is the role of protein arginine methyltransferases (PRMTs), which have been increasingly recognized for their involvement in the pathogenesis of various respiratory diseases. ⋯ It then delves into the impact of arginine methylation and the dysregulation of arginine methyltransferases in diverse pulmonary disorders. Concluding with a focus on the therapeutic potential and recent advancements in PRMT inhibitors, this article aims to offer novel perspectives and therapeutic avenues for the management and treatment of respiratory diseases.
-
Glyburide, a sulfonylurea drug used to treat type 2 diabetes, boasts neuroprotective effects by targeting the sulfonylurea receptor 1 (SUR1) and associated ion channels in various cell types, including those in the central nervous system and the retina. Previously, we demonstrated that glyburide therapy improved retinal function and structure in a rat model of diabetic retinopathy. In the present study, we explore the application of glyburide in non-neovascular ("dry") age-related macular degeneration (AMD), another progressive disease characterized by oxidative stress-induced damage and neuroinflammation that trigger cell death in the retina. ⋯ A positive dose-response relationship is observed from this analysis, in which higher cumulative doses of glyburide further reduce the odds of new-onset dry AMD. In the quest for novel therapies for AMD, glyburide emerges as a promising repurposable drug given its known safety profile. The results from this study provide insights into the multifaceted actions of glyburide and its potential as a neuroprotective agent for retinal diseases; however, further preclinical and clinical studies are needed to validate its therapeutic potential in the context of degenerative retinal disorders such as AMD.