Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics
-
Unraveling the complex network of neural circuits that form the nervous system demands tools that can manipulate specific circuits. The recent evolution of genetic tools to target neural circuits allows an unprecedented precision in elucidating their function. Here we describe two general approaches for achieving circuit specificity. ⋯ These approaches introduce light-sensitive channels (optogenetic) or drug sensitive channels (chemogenetic) into neurons that form specific circuits. We compare these tools with others developed for circuit-specific manipulation and describe the advantages of each. Finally, we discuss how these tools might be applied for identification of the neural circuits that mediate behavior and for repair of neural connections.
-
Identifying effective therapies for the treatment of progressive forms of multiple sclerosis (MS) is a highly relevant priority and one of the greatest challenges for the global MS community. Better understanding of the mechanisms involved in progression of the disease, novel trial designs, drug repurposing strategies, and new models of collaboration may assist in identifying effective therapies. In this review, we discuss various therapies under study in phase II or III trials, including antioxidants (idebenone); tyrosine kinase inhibitors (masitinib); sphingosine receptor modulators (siponimod); monoclonal antibodies (anti-leucine-rich repeat and immunoglobulin-like domain containing neurite outgrowth inhibitor receptor-interacting protein-1, natalizumab, ocrelizumab, intrathecal rituximab); hematopoetic stem cell therapy; statins and other possible neuroprotective agents (amiloride, riluzole, fluoxetine, oxcarbazepine); lithium; phosphodiesterase inhibitors (ibudilast); hormone-based therapies (adrenocorticotrophic hormone and erythropoietin); T-cell receptor peptide vaccine (NeuroVax); autologous T-cell immunotherapy (Tcelna); MIS416 (a microparticulate immune response modifier); dopamine antagonists (domperidone); and nutritional supplements, including lipoic acid, biotin, and sunphenon epigallocatechin-3-gallate (green tea extract). Given ongoing and planned clinical trial initiatives, and the largest ever focus of the global research community on progressive MS, future prospects for developing targeted therapeutics aimed at reducing disability in progressive forms of MS appear promising.
-
The best-known peripheral neuropathies are those affecting the large, myelinated motor and sensory fibers. These have well-established immunological causes and therapies. Far less is known about the somatic and autonomic "small fibers"; the unmyelinated C-fibers, thinly myelinated A-deltas, and postganglionic sympathetics. ⋯ Preliminary evidence supports efficacy of corticosteroids and immunoglobulins in carefully selected children and adult patients. This paper reviews the evidence of immune causality and the limited data regarding immunotherapy for small-fiber-predominant ganglionitis, regional neuropathy (complex regional pain syndrome), and distal SFPN. These demonstrate the need to develop case definitions and outcome metrics to improve diagnosis, enable prospective trials, and dissect the mechanisms of small-fiber neuropathy.
-
Immunotherapy has been investigated in a small subset of peripheral neuropathies, including an acute one, Guillain-Barré syndrome, and 3 chronic forms: chronic inflammatory demyelinating polyradiculoneuropathy, multifocal motor neuropathy, and neuropathy associated with IgM anti-myelin-associated glycoprotein. Several experimental studies and clinical data are strongly suggestive of an immune-mediated pathogenesis. ⋯ Immunomodulatory treatments used in these neuropathies aim to act at various steps of this pathogenic process. However, there are many phenotypic variants and, consequently, there is a significant difference in the response to immunotherapy between these neuropathies, as well as a need to improve our knowledge and long-term management of chronic forms.
-
Cannabis has a long history of anecdotal medicinal use and limited licensed medicinal use. Until recently, alleged clinical effects from anecdotal reports and the use of licensed cannabinoid medicines are most likely mediated by tetrahydrocannabinol by virtue of: 1) this cannabinoid being present in the most significant quantities in these preparations; and b) the proportion:potency relationship between tetrahydrocannabinol and other plant cannabinoids derived from cannabis. However, there has recently been considerable interest in the therapeutic potential for the plant cannabinoid, cannabidiol (CBD), in neurological disorders but the current evidence suggests that CBD does not directly interact with the endocannabinoid system except in vitro at supraphysiological concentrations. ⋯ Moreover, a number of other molecular targets of CBD reported in the literature are unlikely to be of relevance owing to effects only being observed at supraphysiological concentrations. Of interest and after excluding unlikely and implausible targets, the remaining molecular targets of CBD with plausible evidence for involvement in therapeutic effects in neurological disorders (e.g., voltage-dependent anion channel 1, G protein-coupled receptor 55, CaV3.x, etc.) are associated with either the regulation of, or responses to changes in, intracellular calcium levels. While no causal proof yet exists for CBD's effects at these targets, they represent the most probable for such investigations and should be prioritized in further studies of CBD's therapeutic mechanism of action.