Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics
-
Epileptic encephalopathies represent a group of devastating epileptic disorders that occur early in life and are often characterized by pharmaco-resistant epilepsy, persistent severe electroencephalographic abnormalities, and cognitive dysfunction or decline. Next generation sequencing technologies have increased the speed of gene discovery tremendously. Whereas ion channel genes were long considered to be the only significant group of genes implicated in the genetic epilepsies, a growing number of non-ion-channel genes are now being identified. ⋯ We review the recent next generation sequencing findings that may impact treatment choices. We also describe the use of conventional and newer anti-epileptic and hormonal medications in the various syndromes based on their genetic profile. At a biological level, developments in cellular reprogramming and genome editing represent a new direction in modeling these pediatric epilepsies and could be used in the development of novel and repurposed therapies.
-
Neuromodulation shows increasing promise in the treatment of psychiatric disorders, particularly obsessive-compulsive disorder (OCD). Development of tools and techniques including deep brain stimulation, transcranial magnetic stimulation, and electroconvulsive therapy may yield additional options for patients who fail to respond to standard treatments. This article reviews the motivation for and use of these treatments in OCD. ⋯ Neuroimaging findings and historical treatments that led to the use of neuromodulation for OCD are presented. We then present evidence from neuromodulation studies using deep brain stimulation, electroconvulsive therapy, and transcranial magnetic stimulation, with targets including nucleus accumbens, subthalamic nucleus inferior thalamic peduncle, dorsolateral prefrontal cortex, supplementary motor area, and orbitofrontal cortex. Finally, we explore potential future neuromodulation approaches that may further refine and improve treatment.
-
Deep brain stimulation (DBS) is an implanted electrical device that modulates specific targets in the brain resulting in symptomatic improvement in a particular neurologic disease, most commonly a movement disorder. It is preferred over previously used lesioning procedures due to its reversibility, adjustability, and ability to be used bilaterally with a good safety profile. Risks of DBS include intracranial bleeding, infection, malposition, and hardware issues, such migration, disconnection, or malfunction, but the risk of each of these complications is low--generally ≤ 5% at experienced, large-volume centers. ⋯ Brain targets implanted include the thalamus (most commonly for essential tremor), subthalamic nucleus (most commonly for Parkinson's disease), and globus pallidus (Parkinson's disease and dystonia), although new targets are currently being explored. Future developments include brain electrodes that can steer current directionally and systems capable of "closed loop" stimulation, with systems that can record and interpret regional brain activity and modify stimulation parameters in a clinically meaningful way. New, image-guided implantation techniques may have advantages over traditional DBS surgery.
-
With continuous progress and rapid technological advancement of neuromodulation it is conceivable that within next decade or so, our approach to the electrical stimulation of the spinal cord used in treatment of chronic pain will change radically. The currently used spinal cord stimulation (SCS), with its procedural invasiveness, bulky devices, simplistic stimulation paradigms, and frustrating decline in effectiveness over time will be replaced by much more refined and individually tailored modality. ⋯ Based on the information available today, this article will summarize emerging applications of SCS in the treatment of pain and theorize on further developments that may be introduced in the foreseeable future. An overview of clinical and technological innovations will serve as a basis for better understanding of SCS landscape for the next several years.