Journal of breath research
-
Many (multi-centre) breath-analysis studies require transport and storage of samples. We aimed to test the effect of transportation and storage using sorbent tubes of exhaled breath samples for diagnostic accuracy of eNose and GC-MS analysis. As a reference standard for diagnostic accuracy, breath samples of asthmatic patients and healthy controls were analysed by three eNose devices. ⋯ Similar accuracies were achieved at t1 (AUC eNose 0.78; GC-MS 0.84), t7 (AUC eNose 0.76; GC-MS 0.79) and t14 (AUC eNose 0.83; GC-MS 0.84). The GC-MS analysis of compounds showed an adequate stability for all 15 compounds during the 14 day period. Short-term transportation and storage using sorbent tubes of breath samples does not influence the diagnostic accuracy for discrimination between asthma and health by eNose and GC-MS.
-
Several studies support that airway acid stress plays a role in the pathophysiology of asthma. Exhaled breath condensate pH (EBC pH) was suggested as a surrogate marker of airway acidification. The dilution of airway lining fluid (ALF) acids and bases by alveolar water may influence condensate pH, but it has not been studied yet. ⋯ There was no difference either in EBC pH or dilution between the two groups. However, a significant relationship was found between EBC pH and dilution in both groups (p < 0.05, r = -0.35 and r = -0.29, asthmatic and healthy groups, respectively). Our results suggest important methodological aspect indicating that EBC pH is affected by respiratory droplet dilution, and this effect should be taken into consideration when interpreting EBC pH data.
-
Comparative Study
Breath isoprene concentrations in persons undergoing general anesthesia and in healthy volunteers.
Human breath contains an abundance of volatile organic compounds (VOCs). Analysis of breath VOC may be used for diagnosis of various diseases or for on-line monitoring in anesthesia and intensive care. However, VOC concentrations largely depend on the breath sampling method and have a large inter-individual variability. ⋯ Furthermore, inspiratory and end-expiratory isoprene concentrations were correlated during anesthesia (r = 0.603, p < 0.001). Multivariate analysis showed that men had significantly higher end-expiratory isoprene concentrations than women. Rebreathing of isoprene from the anesthesia machine possibly accounts for the observed increase in isoprene in the anesthesia group.
-
Exhaled breath contains thousands of volatile organic compounds (VOCs) of which the composition varies depending on health status. Various metabolic processes within the body produce volatile products that are released into the blood and will be passed on to the airway once the blood reaches the lungs. Moreover, the occurrence of chronic inflammation and/or oxidative stress can result in the excretion of volatile compounds that generate unique VOC patterns. ⋯ Exhaled air analysis can, however, also be applied as an analytical or monitoring tool. Within the analytic perspective, the use of VOCs as biomarkers of oxidative stress, inflammation or carcinogenesis is described. As monitoring tool, breathomics can be applied to elucidate the heterogeneity observed in chronic diseases, to study the pathogen(s) responsible for occurring infections and to monitor treatment efficacy.
-
Gastro-oesophageal reflux disease (GORD) has been implicated in the worsening of several respiratory disorders. Current methods of diagnosis lack accuracy, are invasive and can be costly. Recently, novel methods of analysing lung pathophysiology have been developed including the use of an electronic nose and analysis of components of exhaled breath condensate (EBC). ⋯ This pilot study has shown that exhaled breath profiling can be used for detecting GORD in obstructive lung diseases. While the electronic nose was useful in asthma, EBC pepsin was more helpful in COPD. In this study, several different confounders could potentially have affected results and larger prospective interventional studies are needed.