Tissue engineering. Part A
-
Regenerative endodontic procedures have become a valuable alternative for the treatment of immature teeth with pulp necrosis. In addition to resolution of periradicular pathosis and promotion of continued root development, positive vitality testing has been observed in some regenerative clinical cases. Importantly, the positive response to electric stimulation of the regenerated tissue requires targeting of periradicular axons into the previously empty root canal space. ⋯ Next, we demonstrated that this effect is completely abolished by pretreatment with a neutralizing antibody to brain-derived neurotrophic factor (BDNF), but not by antibodies to other neurotrophins. Further, SCAP release BDNF in a concentration-dependent manner as detected by ELISA, and trigger directed axonal targeting both in vitro and in vivo as demonstrated by microfluidic and matrigel implant experiments, respectively. Collectively, these results suggest that SCAP may be responsible for the chemical signal driving axons to target regenerated tissue via a BDNF-dependent mechanism.
-
Multipotent human adipose-derived stromal/stem cells (hADSCs) hold a great promise for cell-based therapy for many devastating human diseases, such as spinal cord injury and stroke. If exogenous hADSCs can be cultured in a three-dimensional (3D) scaffold with effective proliferation and differentiation capacity, it will better mimic the in vivo environment, which will have profound impact on the therapeutic application of hADSCs. In this study, a group of elastic-dominant, porous bioscaffolds from photocurable chitosan and gelatin were fabricated and proven to be biocompatible with both hADSCs and hADSC-derived neuron-like cells (hADSC-NLCs) in vitro. ⋯ Moreover, hADSC-NLCs, which were mixed with 3D scaffold and transplanted into traumatic brain injury mouse model, survived in vivo and led to the better repair of the damaged brain area. The immunohistochemical studies revealed that 3D scaffold indeed improved the viability of transplanted cells, their ability to incorporate into the in vivo neural circuit, and their capacity for tissue repair. This study indicates that hADSCs would have great therapeutic application potential as seeding cells for in vivo transplantation to treat various neurological diseases when co-applied with porous chitosan/gelatin bioscaffolds.
-
Understanding interactions among the three elements (cells, scaffolds, and bioactive factors) is critical for successful tissue engineering. This study was aimed to investigate how scaffolds would affect osteogenic gene expression in human adipose tissue-derived stem cells (ASCs) or human primary osteoblasts (HOBs), and their cross talk. Either ASCs or HOBs were seeded on Baghdadite (Ca3ZrSi2O9) and hydroxyapatite/tricalcium phosphate (HA/TCP) scaffolds, and osteogenic gene expression was assessed. ⋯ In addition, the ASCs seeded on Baghdadite scaffolds more markedly promoted osteogenic gene expression in HOBs than did the ASCs on HA/TCP scaffolds. BMP-2 expression in ASCs or HOBs was increased when they were seeded on Baghdadite scaffolds, and adding Noggin into the co-culture medium largely abrogated Baghdadite scaffold-modulated ASC-HOB cross talk. In summary, Baghdadite scaffolds not only promote the osteogenic differentiation of HOBs or ASCs but also modulate the cross talk between ASCs and HOBs, in part via increasing BMP2 expression, thereby promoting their osteogenic differentiation.
-
Endogenous electric fields are instructive during embryogenesis by acting to direct cell migration, and postnatally, they can promote axonal growth after injury (McCaig 1991, Al-Majed 2000). However, the mechanisms for these changes are not well understood. Application of an appropriate electrical stimulus may increase the rate and success of nerve repair by directly promoting axonal growth. ⋯ An 11-fold increase in nerve growth factor but not brain-derived neurotrophic factor or glial-derived growth factor was found in the electrically prestimulated Schwann cell-conditioned medium. No significant changes in fibroblast or endothelial morphology and neuro-supportive behavior were observed poststimulation. Electrical stimulation is widely used in clinical settings; however, the rational application of this cue may directly impact and enhance neuro-supportive behavior, improving nerve repair.
-
Two-thirds of burn patients with deep dermal injuries are affected by hypertrophic scars, and currently, there are no clinically effective therapies. Tissue-engineered skin is a very promising model for the elucidation of the role of matrix microenvironment and biomechanical characteristics and could help in the identification of new therapeutic targets for hypertrophic scars. Conventionally, tissue-engineered skin is made of heterogeneous dermal fibroblasts and keratinocytes; however, recent work has shown that superficial and deep dermal fibroblasts are antifibrotic and profibrotic, respectively. ⋯ Additionally, keratinocytes reduced the differentiation of deep fibroblasts to myofibroblasts in tissue-engineered skin constructs, but not that of superficial fibroblasts. Taken together, keratinocytes reduce fibrotic remodeling of the scaffolds by deep dermal fibroblasts. Our results therefore demonstrate that tissue-engineered skin made specifically with a homogeneous population of superficial fibroblasts and keratinocytes is less fibrotic than that with a heterogeneous population of fibroblasts and keratinocytes.