EMBO molecular medicine
-
EMBO molecular medicine · Jul 2020
CommentSARS-CoV-2, bacterial co-infections, and AMR: the deadly trio in COVID-19?
Respiratory viral infections are well known to predispose patients to bacterial co-infections and superinfections. Still, there is limited reference to these in COVID-19. Do co-infections play a significant role during COVID-19? What is the impact of antimicrobial resistance?
-
EMBO molecular medicine · Jun 2020
Is BCG vaccination causally related to reduced COVID-19 mortality?
The ongoing severe acute respiratory sickness coronavirus 2 (SARS-CoV-2) pandemic has resulted in more than 3,600,000 detected cases of COVID-19 illness and nearly 260,000 deaths worldwide as of May 6, 2020. Recently, BCG vaccination was shown to correlate with reduced COVID-19 case fatality rates (preprint: Miller et al, 2020; preprint: Sala & Miyakawa, 2020; https://www.jsatonotes.com/2020/03/if-i-were-north-americaneuropeanaustral.html). The most recent data from publicly available resources also indicate that both COVID-19 incidence and total deaths are strongly associated with the presence or absence of national mandatory BCG vaccination programs. ⋯ COVID-19 mortality was also higher in countries where widespread BCG vaccination was discontinued more than 20 years ago and in countries that used the BCG Denmark strain regularly or temporarily. This raises the question of whether BCG vaccination and reduced COVID-19 mortality are causally related. An additional question is why different BCG strains may be variably associated with mortality.
-
The COVID-19 pandemic has spread to many countries around the world, but the infection and death rates vary widely. One country that appeared to have kept the infection under control despite limited societal restrictions is Japan. This commentary explores why Japan may have, up to now, been spared an escalation of the SARS-CoV-2 infections.
-
What is COVID-19? What are the causes, parameters, and effects of this disease? What are the short- and long-term prospects? Philippe Sansonetti, Infectious disease specialist and Chief Editor of EMBO Molecular Medicine, explains why the fate of the epidemic is in our hands.
-
EMBO molecular medicine · Sep 2018
mitoTev-TALE: a monomeric DNA editing enzyme to reduce mutant mitochondrial DNA levels.
Pathogenic mitochondrial DNA (mtDNA) mutations often co-exist with wild-type molecules (mtDNA heteroplasmy). Phenotypes manifest when the percentage of mutant mtDNA is high (70-90%). Previously, our laboratory showed that mitochondria-targeted transcription activator-like effector nucleases (mitoTALENs) can eliminate mutant mtDNA from heteroplasmic cells. ⋯ We tested whether molecular hybrids (mitoTev-TALEs) could specifically bind and cleave mtDNA of patient-derived cybrids harboring different levels of the m.8344A>G mtDNA point mutation, associated with myoclonic epilepsy with ragged-red fibers (MERRF). We tested two mitoTev-TALE designs, one of which robustly shifted the mtDNA ratio toward the wild type. When this mitoTev-TALE was tested in a clone with high levels of the MERRF mutation (91% mutant), the shift in heteroplasmy resulted in an improvement of oxidative phosphorylation function. mitoTev-TALE provides an effective architecture for mtDNA editing that could facilitate therapeutic delivery of mtDNA editing enzymes to affected tissues.