Hormones and behavior
-
Rett syndrome is a neurodevelopmental disorder that is a direct consequence of functional mutations in the methyl-CpG-binding protein-2 (MeCP2) gene, which has focused attention on epigenetic mechanisms in neurons. MeCP2 is widely believed to be a transcriptional repressor although it may have additional functions in the CNS. ⋯ Recent work has also demonstrated that MeCP2 plays an important role in mediating synaptic transmission in the CNS in particular, spontaneous neurotransmission and short-term synaptic plasticity. This review will discuss the role of MeCP2 in CNS development and function, as well as a potential important role for MeCP2 and epigenetic processes involved in mediating transcriptional repression in Rett syndrome.
-
Hormones and behavior · Mar 2011
Individual differences in the effect of social defeat on anhedonia and histone acetylation in the rat hippocampus.
Major depression is a growing problem worldwide with variation in symptoms and response to treatment. Individual differences in response to stress may contribute to such observed individual variation in behavior and pathology. Therefore, we investigated depressive-like behavior following exposure to repeated social defeat in a rat model of individual differences in response to novelty. ⋯ Following defeat, this acetylation pattern changed differentially, with HR rats decreasing acetylation of H3K14 and H2B and LR's increasing acetylation of H3K14. Acetylation on histone H4 decreased following defeat with no individual variation. Basal differences in CBP expression levels may underlie the observed acetylation pattern; however we found no significant effects of defeat in levels of HDACs 3, 4, 5 in the hippocampus.
-
This study evaluated the impact of sex on the short term consequences of different periods of sleep deprivation and the effect of the respective sleep recovery periods on nociceptive responses. Male and female C57BL/6J mice were assigned to the following groups: paradoxical sleep deprived (PSD) for 72 h, sleep restricted (SR) for 15 days, exposed to respective recovery periods for 24 h, or untreated home-cage controls (CTRL). Mice were submitted to a noxious thermal stimulus to evaluate their nociceptive response after PSD, SR, or recovery periods. ⋯ Our study revealed that PSD and SR induce hyperalgesia in mice. The SR groups showed marked changes in the nociceptive response, and the females were more sensitive to these alterations. This finding indicates that, although different periods of sleep deprivation change the nociceptive sensitivity in male and female mice, sex could influence hyperalgesia induced by chronic sleep loss.
-
Hormones and behavior · Aug 2010
Orexin mediates initiation of sexual behavior in sexually naive male rats, but is not critical for sexual performance.
The hypothalamic neuropeptide orexin mediates arousal, sleep, and naturally rewarding behaviors, including food intake. Male sexual behavior is altered by orexin receptor-1 agonists or antagonists, suggesting a role for orexin-A in this naturally rewarding behavior. However, the specific role of endogenous orexin-A or B in different elements of male sexual behavior is currently unclear. ⋯ Likewise, lesions did not affect sexual motivation in experienced males, determined by runway tests. Finally, elevated plus maze tests demonstrated reduced anxiety-like behaviors in lesioned males, supporting a role for orexin in anxiety associated with initial exposure to the female in naive animals. Overall, these findings show that orexin is not critical for male sexual performance or motivation, but may play a role in arousal and anxiety related to sexual behavior in naive animals.
-
Hormones and behavior · Jun 2010
ReviewSex differences in opioid analgesia, hyperalgesia, tolerance and withdrawal: central mechanisms of action and roles of gonadal hormones.
This article reviews sex differences in opiate analgesic and related processes as part of a Special Issue in Hormones and Behavior. The research findings on sex differences are organized in the following manner: (a) systemic opioid analgesia across mu, delta and kappa opioid receptor subtypes and drug efficacy at their respective receptors, (b) effects of the activational and organizational roles of gonadal steroid hormones and estrus phase on systemic analgesic responses, (c) sex differences in spinal opioid analgesia, (d) sex differences in supraspinal opioid analgesia and gonadal hormone effects, (e) the contribution of genetic variance to analgesic sex differences, (f) sex differences in opioid-induced hyperalgesia, (g) sex differences in tolerance and withdrawal-dependence effects, and (h) implications for clinical therapies.