Injury
-
The use of intramedullary nails for the treatment of long bone fractures has become increasingly frequent over the last decade with gradually expanding indications and technological advances. Improved biomechanics relative to plates and less direct fracture exposure are some of the potential benefits of intramedullary nails. ⋯ Proposed theories for which there is a growing body of supporting evidence include hardware prominence, suboptimal nail entry points leading to soft tissue irritation and structural compromise, local heterotrophic ossification, implant instability with persistent fracture micromotion, and poorly defined insertional strain. Many factors that lead to insertion-related pain are iatrogenic, and careful attention to detail and refined surgical techniques will optimize outcomes.
-
Locked intramedullary fixation is a well-established technique for managing long-bone fractures. While intramedullary nail fixation of diaphyseal fractures in the femur, tibia, and humerus is well established, the same is not true for other fractures. Surgical fixations of clavicle, forearm and ankle are traditionally treated with plate and screw fixation. ⋯ However, there is however a concern regarding a lack of rotational stability and fracture shortening. While new generation of locked intramedullary devices for fractures of clavicle, forearm and fibula are recently available, the outcomes are not as reliable as fixation with plates and screws. Further research in this area is warranted with high quality comparative studies, to investigate the outcomes and indication of these fractures treated with intramedullary nail devices compared to intramedullary nail fixation.
-
Comparative Study
Three-dimensional comparison of alternative screw positions versus actual fixation of scaphoid fractures.
The recommended technique for the fixation of a scaphoid waist fracture involves a headless compression screw placed in the proximal fragment center. This is usually accomplished by placing a longitudinal axis screw as visualized by fluoroscopy. The screw length has been shown to have a biomechanical advantage. An alternative to these options, which has been debated in the literature, is a screw placed perpendicular to the fracture plane and in its center. The perpendicular screw may have a biomechanical advantage despite the fact that it may be shorter. This study examined the differences in location and length in actual patients between a screw in the center of the proximal fragment with a longitudinal axis screw, and the actual fixating screw. These were then compared to a perpendicular axis screw. ⋯ A computed longitudinal axis screw is longer than a central or actual screw placed longitudinally by visual inspection by the surgeon. Although it needs to be placed using computer assisted (CAS) techniques, it may have the biomechanical advantages of a longer screw in a similar trajectory. The perpendicular screw was found to be significantly different in position and angle but not shorter than the actually placed screw. It has biomechanical advantages and does not require visualization with CAS methods, making it the more attractive alternative.
-
The epidemiology of fracture nonunion has been characterized so it is potentially possible to predict nonunion using patient-related risk factors. However, prediction models are currently too cumbersome to be useful. We test a hypothesis that nonunion can be predicted with ≤10 variables, retaining the predictive accuracy of a full model with 42 variables. ⋯ Nonunion can be predicted in 18 fracture locations using parsimonious models with <10 patient demography-related risk factors. The model reduction approach used results in simplified models that have nearly the same AUC as the full model. Reduced algorithms can predict nonunion because risk factors important in the full models remain important in the reduced models. This prognostic inception cohort study provides Level I evidence.
-
High-energy proximal tibial fractures often accompany compartment syndrome and are usually treated by fasciotomy with external fixation followed by secondary plating. However, the initial soft tissue injury may affect bony union, the fasciotomy incision or external fixator pin sites may lead to postoperative wound infections, and the staged procedure itself may adversely affect lower limb function. We assess the results of staged minimally invasive plate osteosynthesis (MIPO) for proximal tibial fractures with acute compartment syndrome. ⋯ Staged MIPO for proximal tibial fractures with acute compartment syndrome may achieve satisfactory bony union and functional results, while decreasing deep infections and soft tissue complications.