Injury
-
The management of fracture-related infection has undergone radical progress following the development of international guidelines. However, there is limited consideration to the realities of healthcare in low-resource environments due to a lack of available evidence in the literature from these settings. Initial antimicrobial suppression to support fracture union is frequently used in low- and middle-income countries despite the lack of published clinical evidence to support its practice. This study aimed to evaluate the outcomes following initial antimicrobial suppression to support fracture union in the management of fracture-related infection. ⋯ IV.
-
Randomized Controlled Trial Comparative Study
Treatment of non-hypertrophic pseudoarthrosis of long bones with a Tissue Engineered Product loaded with autologous bone marrow-derived Mesenchymal Stromal Cells: Results from a phase IIa, prospective, randomized, parallel, pilot clinical trial comparing to iliac crest autograft.
Atrophic pseudoarthrosis is a serious complication with an incidence of 5-10 % of bone fractures located in the diaphysis of long bones. Standard treatments involve aggressive surgical procedures and re-interventions requiring the use of autografts from the iliac crest as a source of bone-forming biological activity (Standard of Care, SoC). In this context, regenerative ex vivo expanded osteogenic cell-based medicines could be of interest. Particularly, Mesenchymal Stromal Cells (MSC) offer new prospects to promote bone tissue repair in pseudoarthrosis by providing biological activity in an osteoconductive and osteoinductive environment. ⋯ Although only a small number of patients were included in our study, it is notable that no significant differences were observed between the experimental treatment and SoC, thus suggesting TEP as an alternative where autograft is not available or contraindicated.
-
Comparative Study
Identifying prehospital trauma patients from ambulance patient care records; comparing two methods using linked data in New South Wales, Australia.
Linked datasets for trauma system monitoring should ideally follow patients from the prehospital scene to hospital admission and post-discharge. Having a well-defined cohort when using administrative datasets is essential because they must capture the representative population. Unlike hospital electronic health records (EHR), ambulance patient-care records lack access to sources beyond immediate clinical notes. Relying on a limited set of variables to define a study population might result in missed patient inclusion. We aimed to compare two methods of identifying prehospital trauma patients: one using only those documented under a trauma protocol and another incorporating additional data elements from ambulance patient care records. ⋯ The extended-T-population definition identified 50 % more admitted patients with an ICD-10-AM code consistent with an injury, including patients with severe trauma. Developing an EHR phenotype incorporating multiple data fields of ambulance-transported trauma patients for use with linked data may avoid missing these patients.