Stroke; a journal of cerebral circulation
-
Recently, we showed that decreasing cerebral perfusion pressure (CPP) from 70 mm Hg to 50 mm Hg and 30 mm Hg by increasing intracranial pressure (ICP) with a fluid reservoir induces a transition from capillary (CAP) to microvascular shunt (MVS) flow in the uninjured rat brain. This transition was associated with tissue hypoxia, increased blood-brain barrier (BBB) permeability, and brain edema. Our aim was to determine whether an increase in CPP would attenuate the transition to MVS flow at high ICP. ⋯ Increasing CPP at high ICP attenuates the transition from CAP to MVS flow, development of tissue hypoxia, and increased BBB permeability.