Stroke; a journal of cerebral circulation
-
Individualizing mean arterial blood pressure targets to a patient's cerebral blood flow autoregulatory range might prevent brain ischemia for patients undergoing cardiopulmonary bypass (CPB). This study compares the accuracy of real-time cerebral blood flow autoregulation monitoring using near-infrared spectroscopy with that of transcranial Doppler. ⋯ Cerebral blood flow autoregulation can be monitored continuously with near-infrared spectroscopy in adult patients undergoing CPB. Real-time autoregulation monitoring may have a role in preventing injurious hypotension during CPB. Clinical Trials Registration- at www.clinicaltrials.gov (NCT00769691).
-
Monitoring cerebral blood flow pressure autoregulation in pediatric patients during cardiac surgery.
The limits of cerebral blood flow-pressure autoregulation have not been adequately defined for pediatric patients. Mean arterial blood pressure below these limits might contribute to brain injury during cardiac surgery. The purpose of this pilot study was to assess a novel method of determining the lower limits of pressure autoregulation in pediatric patients supported with cardiopulmonary bypass. ⋯ This pilot study of COx monitoring in pediatric patients demonstrates an association between hypotension during cardiopulmonary bypass and impairment of autoregulation. The COx may be useful to identify arterial blood pressure-dependent limits of cerebral autoregulation during cardiopulmonary bypass. Larger trials with neurological outcomes are indicated.
-
Comparative Study
Continuous assessment of cerebral autoregulation with near-infrared spectroscopy in adults after subarachnoid hemorrhage.
In patients with subarachnoid hemorrhage, the assessment of cerebral autoregulation aids in prognosis as well as detection of vasospasm. Mx is a validated index of cerebral autoregulation based on measures of cerebral perfusion pressure and mean flow velocity on transcranial Doppler but is impractical for longer-term monitoring. Near-infrared spectroscopy is noninvasive and suitable for continuous monitoring of cerebral tissue oxygenation using the Tissue Oxygenation Index. In this study, we compared near-infrared spectroscopy-based indices of cerebral autoregulation (TOx) with Mx in patients with subarachnoid hemorrhage. ⋯ Near-infrared spectroscopy can be used to continuously assess cerebral autoregulation in adults after subarachnoid hemorrhage.
-
The objective of this study was to determine the baseline proportion of emergency physicians with favorable attitudes and beliefs toward intravenous tissue plasminogen activator (tPA) use in a cohort of randomly selected Michigan hospitals. ⋯ In this cohort, emergency physician attitudes and beliefs toward intravenous tPA use in stroke are considerably more favorable than previously reported.
-
Cerebral vasomotor reactivity (VMR) is a capability of cerebral vessels to dilate in response to hypercapnia. Transcranial direct current stimulation (tDCS) effects on cerebral hemodynamics have been poorly studied. ⋯ Cerebral VMR is modified by tDCS. Based on the consensual changes with heart rate variability, we can hypothesize that the sympathetic nervous system could modulate the bihemispheric modification of VMR. Further studies are needed to confirm this hypothesis.