Amyotrophic lateral sclerosis & frontotemporal degeneration
-
Amyotroph Lateral Scler Frontotemporal Degener · Jun 2014
Opportunities for improving therapy development in ALS.
In May 2013, The ALS Association and The Northeast ALS Consortium (NEALS) convened a meeting of stakeholders for a round-table discussion of ways to improve therapy development in ALS. The following overview summarizes issues raised and potential new directions discussed at the meeting. We recommend that future phase II clinical trials in ALS proceed when the proposed treatment is directed at targets that are likely to be involved in ALS pathogenesis in a defined subgroup of patients, and be accompanied by one or more biomarkers to track both clinical progression and pharmacodynamic engagement of the target. Innovations in trial structure and design, and greater involvement of patient advocates, may also improve trials.
-
Amyotroph Lateral Scler Frontotemporal Degener · Jun 2014
Cortical hyperexcitability and the split-hand plus phenomenon: pathophysiological insights in ALS.
Preferential involvement of thenar muscles compared to flexor pollicis longus (FPL), termed 'the split-hand plus sign', appears to be a clinical feature of amyotrophic lateral sclerosis (ALS). In an attempt to understand the pathophysiological mechanisms underlying this clinical phenomenon, threshold tracking transcranial magnetic stimulation techniques were utilized to assess whether cortical mechanisms may be a significant contributing influence. Cortical excitability studies were undertaken on 17 ALS patients, with motor evoked potentials (MEP) recorded from thenar muscles and FPL. ⋯ The cortical silent period duration was reduced from thenar muscles (p < 0.01). Although there was a ubiquitous reduction in short-interval intracortical inhibition (APB, p < 0.01; FPL < 0.05), this reduction was more prominent over the thenar muscles. In conclusion, findings from the present study suggest that cortical dysfunction in the form of hyperexcitability contributes to the pathophysiological basis of the split-hand plus sign in ALS.