Neuropharmacology
-
Conditioned place preference (CPP) is widely used to investigate the rewarding properties of cocaine. Various brain regions and neurotransmitters are involved in developing cocaine CPP. However, the contribution of cholinergic transmission in the ventral tegmental area (VTA) to cocaine CPP remains largely unexplored. ⋯ Additionally, intra-VTA injection of scopolamine or mecamylamine before cocaine conditioning also attenuated cocaine CPP, demonstrating the contribution of cholinergic transmission via muscarinic and nicotinic acetylcholine receptors in CPP acquisition. Furthermore, intra-VTA injection of scopolamine or mecamylamine immediately before the test attenuated cocaine CPP, indicating that cholinergic signaling is also associated with the expression of CPP. These results suggest that cholinergic transmission from the LDT to the VTA is critically involved in both acquiring and retrieving cocaine-associated memories in cocaine CPP.
-
Dopamine replacement with l-DOPA is the most effective therapy in Parkinson's disease. However, with chronic treatment, half of the patients develop an abnormal motor response including dyskinesias. The specific molecular mechanisms underlying dyskinesias are not fully understood. ⋯ Pharmacological experiments combining buspirone with 5HT1A and DRD3 antagonists confirmed that normalization of both pDARPP32 and pERK2 is required, but not sufficient, for blocking dyskinesias. The correlation between pDARPP32 ratio and dyskinesias was significant but not strong, pointing to the involvement of convergent factors and signalling pathways. Our results suggest that in dyskinetic rats DRD3 striatal over-expression could be instrumental in the activation of DRD1-downstream signalling and demonstrate that the anti-dyskinetic effect of buspirone in this model is correlated with DRD1 pathway normalization.