Neuropharmacology
-
The rat hemisected spinal cord preparation was used to assess the role of different adrenoceptor subtypes on the modulation of nociceptive reflexes. These were elicited by trains of high intensity electrical stimuli delivered to a lumbar dorsal root. Responses were recorded from the corresponding ventral root in AC- and DC-amplification modes simultaneously. ⋯ Noradrenaline-induced depression of cumulative depolarisation was mimicked by the alpha2-adrenoceptor agonist UK 14,304. In addition, this compound produced inhibition of firing in responses to afferent stimulation. These results show that noradrenaline has bi-directional modulatory effects on nociceptive reflexes and indicate that selective activation of alpha1A- but not alpha1B/D-adrenoceptors mediate potentiation of spinal nociceptive reflexes.
-
The voltage dependence and channel-blocking kinetics of uncompetitive NMDA receptor antagonists have been well-described using in vitro techniques, but there is little evidence concerning the functional significance of these properties in vivo. We have now compared the effects of NMDA antagonists that display varied profiles of voltage-dependent block in vitro, on responses of spinal neurones in anaesthetised rats. The compounds examined were the uncompetitive channel blockers memantine, ketamine and MK-801 and, for comparison, an antagonist that acts at the strychnine-insensitive glycine binding site (MRZ 2/502). ⋯ Doses that reduced responses to iontophoretic application of NMDA were less effective at reducing responses to pinch, perhaps due to the major non-NMDA component of the synaptic response. Memantine preferentially reduced "wind-up" relative to responses to pinch, whereas ketamine and MK-801 reduced both types of synaptic responses in parallel. This "filtering" by low affinity, voltage-dependent NMDA antagonists such as memantine, of non-physiological activity whilst leaving normal synaptic events relatively untouched, may contribute to their more favourable clinical profile.
-
Triptans share the pharmacological profile of being 5-hydroxytryptamine (5-HT1B/1D) agonists and having potent anti-migraine activity. The conformationally restricted zolmitriptan analogue 4991W93 was developed as a potent, and at low doses, specific, non-vasconstrictor inhibitor of neurogenic dural plasma protein extravasation. Here, we sought to study the effect of 4991W93 at plasma protein extravasation blocking and at 5-HT(1B/1D) agonist doses. ⋯ When applied iontophoretically, 4991W93 did not appear to have an additive effect over a 5-HT(1B/1D) agonist effective concentration of zolmitriptan. These data suggest that 4991W93 is only effective at modulating the trigeminocervical complex at 5-HT(1B/1D) agonist doses. To account for neurogenic dural plasma protein extravasation blockade in animal studies, 4991W93 might have non-5-HT(1B/1D)-based pharmacological targets that are yet to be described.
-
Comparative Study
The acute effects of zolpidem compared to diazepam and lorazepam using radiotelemetry.
The present study used a radiotelemetric method to compare the muscle relaxant, hypothermic and locomotor depressant actions of the imidazopyridine zolpidem, with those of the benzodiazepines lorazepam and diazepam. Rats, n=7 per group, were divided into 3 dose-dependent treatment groups (highest, middle, and lowest). Each rat within a treatment group received a single dose of diazepam, lorazepam, zolpidem and vehicle. ⋯ Zolpidem (10 mg/kg) decreased EMG activity levels to approximately 45% of vehicle treated controls; a value similar to that induced by diazepam (2.5 mg/kg). These data suggest that the imidazopyridine zolpidem has a similar profile of acute effects in comparison to the benzodiazepines diazepam and lorazepam. However, the relative magnitude of the effects differed, with zolpidem producing less hypothermia and muscle relaxation than the two benzodiazepines.
-
The inwardly rectifying potassium channel IRK1, a member of the Kir 2.0 family, is inhibited by m1 muscarinic receptor stimulation. In this study the mechanism of action underlying the muscarinic response was investigated by identification of the subtype of heterotrimeric G-protein involved in transduction of the signal. tsA201 cells were simultaneously transfected with cDNAs encoding IRK1, m1 and the Galpha subunit of either G(q), G(12) or G(13). The whole-cell patch-clamp technique was used to study the effects of G-protein transfection. ⋯ Transfection with Galpha(q) or Galpha(12) cDNAs greatly increased the levels of G-protein expression in both cell populations. G-protein expression did not interfere with m1 muscarinic receptor expression levels. These findings suggest that the m1 muscarinic-receptor-induced inhibition of IRK1 is mediated by the heterotrimeric G-protein, Galpha(q), in tsA cells.