Neuropharmacology
-
We recently discovered that the activation of the spinal glucagon-like peptide-1 receptors (GLP-1Rs) by the peptidic agonist exenatide produced antinociception in chronic pain. We suggested that the spinal GLP-1Rs are a potential target molecule for the management of chronic pain. This study evaluated the antinociceptive activities of geniposide, a presumed small molecule GLP-1R agonist. ⋯ Intrathecal geniposide induced dose-dependent antinociception, which was completely prevented by spinal exendin(9-39), siRNA/GLP-1R and cyclic AMP/PKA pathway inhibitors. The geniposide iridoid analogs geniposidic acid, genipin methyl ether, 1,10-anhydrogenipin, loganin and catalpol effectively inhibited hydrogen peroxide-induced oxidative damage and formalin pain in an exendin(9-39)-reversible manner. Our results suggest that geniposide and its iridoid analogs produce antinociception during persistent pain by activating the spinal GLP-1Rs and that the iridoids represented by geniposide are orthosteric agonists of GLP-1Rs that function similarly in humans and rats and presumably act at the same binding site as exendin(9-39).
-
Opioids play an important role for the management of acute pain and in palliative care. The role of long-term opioid therapy in chronic non-malignant pain remains unclear and is the focus of much clinical research. ⋯ In this review, we discuss how far human neuroimaging research has come in providing a mechanistic understanding of pain relief provided by opioids, and suggest avenues for further studies that are relevant to the management of chronic pain with opioids. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'.
-
Volatile anesthetics are used widely for achieving a state of unconsciousness, yet these agents are incompletely understood in their mechanisms of action and effects on neural development. There is mounting evidence that children exposed to anesthetic agents sustain lasting effects on learning and memory. The explanation for these behavioral changes remains elusive, although acute neuronal death after anesthesia is commonly believed to be a principal cause. ⋯ However, only males were impaired in the recognition of objects in different locations and contexts. Males also exhibited deficient social memory while females were intact. The profound behavioral impairment in males relative to females, in spite of comparable cell death, suggests that males are more susceptible to long-term cognitive effects and this outcome may not be exclusively attributed to neuronal death.
-
Gabapentin has shown to be effective in animals and humans with acute postoperative and chronic pain. Yet the mechanisms by which gabapentin reduces pain have not been fully addressed. The current study performed in vivo microdialysis in the locus coeruleus (LC) in normal and spinal nerve ligated (SNL) rats to examine the effect of gabapentin on extracellular glutamate concentration and its mechanisms of action with focus on presynaptic GABA-B receptors, astroglial glutamate transporter-1 (GLT-1), and interactions with α2δ subunits of voltage-gated Ca(2+) channels and endogenous noradrenaline. ⋯ Selective blockade by the dihydrokainic acid or knock-down of GLT-1 by the small interfering RNA abolished the gabapentin-induced glutamate increase in the LC, whereas blockade of GABA-B receptors by the CGP-35348 and depletion of noradrenalin by the dopamine-β-hydroxylase antibody conjugated to saporin did not. These results suggest that gabapentin induces glutamate release from astrocytes in the LC via GLT-1-dependent mechanisms to stimulate descending inhibition. The present study also demonstrates that this target of gabapentin in astrocytes does not require interaction with α2δ subunits in neurons.
-
Synaptic transmission in the sympathetic nervous system is a plastic process modulated by different factors. We characterized the effects of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) on basal transmission and ganglionic long-term potentiation (LTP) in the rat superior cervical ganglion. LTP was elicited by supramaximal tetanic stimulation (40 Hz, 3 s) of the sympathetic trunk and was quantified by measuring LTP decay time and LTP extent. ⋯ In sliced ganglia we observed that an anti-TrkA antibody reversed the NGF-induced LTP blockade. Immunohistochemistry studies revealed that 83% of ganglionic neurons express TrkA, whereas 52% express p75 receptor, and 18% express TrkB receptor. We propose that p75 neurotrophin receptors and probably TrkB signaling enhance LTP, whereas TrkA signaling reduces it.