Neuropharmacology
-
Anabaseine is a marine worm toxin that is a relatively non-selective nicotinic agonist, activating both muscle-type and neuronal nicotinic acetylcholine receptors (nAChR) with varying efficacy. While anabaseine has significant activity with muscle-type and neuronal alpha 3 beta 4 and alpha 4 beta 2 receptors, benzylidene anabaseine (BA) derivatives have high selectivity for the alpha 7 receptor subtype. Two BA compounds with substituents at the 2 and 4 positions of the benzylidene ring, GTS-21 and 4OH-GTS-21, may have therapeutic potential for treating neuropathological disorders such as Alzheimer's disease due to their alpha 7 selectivity. ⋯ Increased potency and receptor binding affinity was obtained with a 4-hydroxyl substitution. Two other 4-substituted benzylidene anabaseines, 3-(4'-methylthiobenzylidene)anabaseine (4-MeS-BA) and 3-(4-trifluoromethylbenzylidene) anabaseine (4-CF(3)-BA), offered very little agonist activity for any nicotinic receptors and instead were antagonists for both alpha 7 and neuronal alpha 3 beta 4 and alpha 4 beta 2 receptors. Since the relative amounts of agonist and antagonist activities for specific BA compounds vary with the specific drug/receptor combinations, benzylidene anabaseines provide valuable tools for nAChR drug-receptor structure-function relationships.
-
Comparative Study
Naloxone-induced morphine withdrawal increases the number and degranulation of mast cells in the thalamus of the mouse.
Naloxone-induced jumping in morphine-dependent mice is inhibited by cromolyn, a mast cell stabilizer, suggesting that this characteristic withdrawal behavior results from degranulation of mast cells. Because withdrawal is considered as a central phenomenon, degranulation of mast cells located within the CNS may influence aspects of opioid withdrawal. The present study evaluates histologically whether naloxone, injected into opioid dependent mice, induces degranulation of mast cells. ⋯ Here, mast cells were clustered in the IGL and VPL/VPM nuclei, and redistributed from the ventromedial to the dorsolateral aspects of the Po and PF nuclei during withdrawal. Degranulation was also greater throughout the LD, LP nuclei during withdrawal. These data reveal a novel neuroimmune reaction to opioid withdrawal in the CNS.
-
Comparative Study
Gabapentin may inhibit synaptic transmission in the mouse spinal cord dorsal horn through a preferential block of P/Q-type Ca2+ channels.
Gabapentin is a lipophilic analog of gamma-amino butyric acid (GABA) with therapeutic activity against certain forms of epilepsy and neuropathic pain. Despite its structural similarity to GABA, it does not bind GABAA or GABAB receptors and the mechanism, especially of its analgesic action, has remained elusive. Here, we have studied its effects on synaptic transmission mediated by the major spinal fast excitatory and inhibitory neurotransmitters, L-glutamate and glycine, in the superficial layers of the spinal cord dorsal horn, a CNS area, which is critically involved in nociception. ⋯ Gabapentin did not affect membrane currents elicited by exogenously applied glutamate or glycine arguing against a postsynaptic site of action. Selective blockade of N-type Ca2+ channels with omega-conotoxin GVIA dramatically increased and blockade of P/Q-type channels with omega-agatoxin IVA strongly attenuated inhibition of evoked synaptic transmission by gabapentin. These results show that gabapentin affects both excitatory and inhibitory spinal neurotransmission via a presynaptic mechanism which preferentially involves P/Q-type Ca2+ channels.
-
The voltage-gated sodium channel NaV1.8 (SNS, PN3) is thought to be a molecular correlate of the dorsal root ganglion (DRG) tetrodotoxin resistant (TTX-R) Na+ current. TTX-R/NaV1.8 is an attractive therapeutic drug target for inflammatory and neuropathic pain on the basis of its specific distribution in sensory neurones and its modulation by inflammatory mediators. However, detailed analysis of recombinant NaV1.8 has been hampered by difficulties in stably expressing the functional protein in mammalian cells. ⋯ RT-PCR analysis of wild type ND7-23 cells revealed endogenous expression of the beta1 and beta3 accessory Na+ channel subunits-the possibility that the presence of these subunits assists and stabilises expression of rNaV1.8 is discussed. We conclude that the neuroblastoma ND7-23 cell line is a suitable heterologous expression system for rNaV1.8 Na+ channels in that it allows stable expression of a channel with biophysical properties that closely resemble the native TTX-R currents in DRG neurones. This reagent will prove useful in the search for pharmacological inhibitors of rNaV1.8 as novel analgesics.
-
Comparative Study
Neurofilament proteins and cAMP pathway in brains of mu-, delta- or kappa-opioid receptor gene knock-out mice: effects of chronic morphine administration.
Opiate addiction is associated with abnormalities of neurofilament (NF) proteins and upregulation of cAMP signaling in the brain, which may modulate neuronal plasticity. This study investigated, using gene-targeted mice lacking mu-, delta- or kappa-opioid receptors, the role of these receptors in modulating the basal activity and the chronic effects of morphine on both intracellular targets. In WT mice, chronic treatment (5 days) with morphine (20-100 mg/kg) resulted in decreases in the immunodensity of neurofilament (NF)-L in the cerebral cortex (14-23%). ⋯ In cortex and/or striatum of WT mice, chronic morphine did not induce upregulation of the main components of the cAMP signaling pathway. In contrast, chronic morphine treatment in mu-KO mice, but not in delta- or kappa-KO, resulted in a paradoxical upregulation of Galphai1/2 (12-19%), PKA (19-21%,) and phosphorylated CREB (21-73%), but not total CREB, in cortex and/or striatum. The induction of heterologous receptor adaptations in mu-KO mice may explain this paradoxical effect of morphine.