Neuropharmacology
-
The voltage-gated sodium channel NaV1.8 (SNS, PN3) is thought to be a molecular correlate of the dorsal root ganglion (DRG) tetrodotoxin resistant (TTX-R) Na+ current. TTX-R/NaV1.8 is an attractive therapeutic drug target for inflammatory and neuropathic pain on the basis of its specific distribution in sensory neurones and its modulation by inflammatory mediators. However, detailed analysis of recombinant NaV1.8 has been hampered by difficulties in stably expressing the functional protein in mammalian cells. ⋯ RT-PCR analysis of wild type ND7-23 cells revealed endogenous expression of the beta1 and beta3 accessory Na+ channel subunits-the possibility that the presence of these subunits assists and stabilises expression of rNaV1.8 is discussed. We conclude that the neuroblastoma ND7-23 cell line is a suitable heterologous expression system for rNaV1.8 Na+ channels in that it allows stable expression of a channel with biophysical properties that closely resemble the native TTX-R currents in DRG neurones. This reagent will prove useful in the search for pharmacological inhibitors of rNaV1.8 as novel analgesics.
-
Basic neurobiological studies have led to great progress in our understanding of the mechanisms of action of drugs of abuse. Much has been learned about the brain response from the moment a psychoactive drug enters the organism onwards, including the psychological, neurobiological and peripheral effects of repeated drug administration, withdrawal and re-exposure. However, to relate this knowledge to the human experience requires further research on the antecedents of drug-taking behavior and the factors that predispose particular individuals to drug seeking and drug abuse. ⋯ We rely on animal studies aimed at characterizing the emotional and stress reactivity of rats with different propensities to self-administer drugs (high responders and low responders); we briefly describe the effect of a psychosocial stressor on these animals; we then detail a study using microarray technology aimed at investigating the "neural phenotype" associated with social defeat stress in the high vs. low responder animals. This "discovery" approach is used as a starting place for identifying novel mechanisms that might alter the vulnerability of different individuals to drug-seeking behavior. The power and limits of this approach, and its future directions, are discussed within this general framework.
-
Comparative Study
Spinal muscarinic receptors are activated during low or high frequency TENS-induced antihyperalgesia in rats.
Transcutaneous electrical nerve stimulation (TENS) is a non-pharmacological modality used clinically to relieve pain. Central involvement of serotonin and endogenous opioids are implicated in TENS-induced analgesia. Activation of spinal cholinergic receptors is antinociceptive and these receptors interact with opioid and serotonin receptors. ⋯ Atropine, pirenzepine and 4-DAMP significantly attenuated the antihyperalgesic effects of low and high frequency TENS while mecamylamine and methoctramine had no effects, compared to saline control. The results show that TENS-induced antihyperalgesia is mediated partially by activation of spinal muscarinic receptors but not spinal nicotinic receptors. Further, the results also indicate that spinal M1 and M3 muscarinic receptor subtypes mediate the muscarinic component of TENS antihyperalgesia.
-
Comparative Study
Basal and activity-induced release of substance P from primary afferent fibres in NK1 receptor knockout mice: evidence for negative feedback.
The concept that NK1 receptors are located pre-junctionally on substance P (SP)-containing nerves, acting as autoreceptors to inhibit SP release, has been suggested, but remains a controversial issue. To further investigate the existence of this receptor on central and peripheral terminals of primary afferent fibres, NK1 receptor knockout mice and an NK1 receptor antagonist were used in nerve-attached tissue preparations. These were the isolated dorsal horn of the spinal cord with dorsal roots attached, and the hairy skin of the hind paw with attached saphenous nerve. ⋯ However, a difference in SP release evoked in the dorsal horn by electrical stimulation of the dorsal roots or capsaicin application was not observed. In contrast, antidromic electrical stimulation of the saphenous nerve caused a substantially greater release of SP in the skin of NK1(-/-) mice than in NK1(+/+) mice (P<0.05, n=5 to 6 mice/strain). These results provide evidence for the existence of NK1 autoreceptors on sensory nerves in skin, which may be relevant to the modulation of their peripheral pathophysiological effector functions.
-
In the rat subthalamic nucleus, which plays a critical role in the control of motor behaviour, specific binding of [3H]-prazosin was detected by radioligand binding to homogenates and by autoradiography in slices. [3H]-Prazosin binding to homogenates (Bmax 71 +/- 5 fmol/mg protein; Kd 0.27 +/- 0.05 nM) was competed for by alpha1-antagonists. In subthalamic nucleus slices and in the presence of 10 mM LiCl, noradrenaline (100 microM) produced a modest, but consistent, stimulation of [3H]-inositol phosphate accumulation (146 +/- 6% of basal), reversed by the alpha1-antagonist prazosin (1 microM). Extracellular single-unit recordings in slices showed that in a subpopulation (61 out of 94 cells) of rat subthalamic neurones with regular, single-spike firing pattern, noradrenaline induced a concentration-dependent increase in the firing rate (EC50 2.5 +/- 0.2 microM, maximum effect 272 +/- 33% of basal). ⋯ In four out of 11 neurones perfusion with 3 microM noradrenaline resulted in a shift from bursting to regular firing. Taken together, our results indicate that rat subthalamic neurones express alpha1-adrenoceptors responsible for noradrenaline-induced stimulation of the firing rate of a subpopulation of neurones. By modulating the spontaneous activity of STN neurones, noradrenergic pathways might have a significant role in regulating basal ganglia function and thus motor activity.