BioMed research international
-
Sepsis is a leading cause of mortality and morbidity in the critical illness. Multiple immune inflammatory processes take part in the pathogenesis of sepsis. Defensins are endogenous antimicrobial peptides with three disulphide bonds created by six cysteine residues. ⋯ Defensins can recruit neutrophils, enhance phagocytosis, chemoattract T cells and dendritic cells, promote complement activation, and induce IL-1β production and pyrotosis. Previous publications have documented that defensins play important roles in a series of immune inflammatory diseases including sepsis. This review aims to briefly summarize in vitro, in vivo, and genetic studies on defensins' effects as well as corresponding mechanisms within sepsis and highlights their promising findings which may be potential targets in future therapies of sepsis.
-
Multiple myeloma is the second most common hematologic malignancy in the world. Despite improvement in outcome, the disease is still incurable for most patients. However, not all myeloma are the same. ⋯ These levels of complexities present challenges in terms of treatment and prognostication as well as monitoring of treatment. However, if we can clearly delineate and dissect this heterogeneity, we may also be presented with unique opportunities for precision and personalized treatment of myeloma. Some proof of concepts of such approaches has been demonstrated.
-
Sepsis results in widespread inflammatory responses altering homeostasis. Associated circulatory abnormalities (peripheral vasodilation, intravascular volume depletion, increased cellular metabolism, and myocardial depression) lead to an imbalance between oxygen delivery and demand, triggering end organ injury and failure. ⋯ Over the past few years, the safety of some fluid preparations has been questioned. Our paper highlights current concerns, reviews the science behind current practices, and aims to clarify some of the controversies surrounding fluid resuscitation in sepsis.
-
Conventional natural killer cells (NK cells) provide continual surveillance for cancer and rapid responses to infection. They develop in the bone marrow, emerge as either NK precursor cells, immature, or mature cells, and disperse throughout the body. In the periphery NK cells provide critical defense against pathogens and cancer and are noted to develop features of adaptive immune responses. ⋯ This review presents what is known about NK cell development and phenotypes of mucosal tissue resident conventional NK cells. The question of how they come to reside in their tissues and published data on their function against pathogens during mucosal infection are discussed. Dissecting major questions highlighted in this review will be important to the further understanding of NK cell homing and functional diversity and improve rational design of NK cell based therapies against mucosal infection.
-
Survival from out-of-hospital cardiac arrest depends largely on two factors: early cardiopulmonary resuscitation (CPR) and early defibrillation. CPR must be interrupted for a reliable automated rhythm analysis because chest compressions induce artifacts in the ECG. Unfortunately, interrupting CPR adversely affects survival. ⋯ Recently, researchers have proposed a new methodology to measure this impact. Moreover, new strategies for fast rhythm analysis during ventilation pauses or high-specificity algorithms have been reported. Our objective is to present a thorough review of the field as the starting point for these late developments and to underline the open questions and future lines of research to be explored in the following years.