Anesthesia and analgesia
-
Anesthesia and analgesia · Mar 1999
Clinical TrialThe nature of spontaneous recovery from mivacurium-induced neuromuscular block.
The hypothesis of this study was that, in a given patient, recovery from a tracheal intubating dose of mivacurium would indicate the time course of spontaneous recovery after discontinuation of an infusion of mivacurium. Thirty-eight male patients consented to participate in the study. After induction of anesthesia and endotracheal intubation, the ulnar nerve was stimulated with train-of-four (TOF) stimuli at 12-s intervals. Patients received 0.3 mg/kg mivacurium in two evenly divided doses of 0.15 mg/kg each, separated by 30 s. Complete ablation of TOF responses occurred in most patients. Once the first twitch in the TOF (T ) had recovered to 25% of its baseline height, a mivacurium infusion was begun to maintain 95% suppression of T1. As surgery was nearing completion, the infusion was discontinued, and neuromuscular function was allowed to recover spontaneously. Data were analyzed for recovery intervals after the administration of the initial doses of mivacurium and after discontinuation of the infusion. Analysis of variance was used to determine the strength of correlation between the time from administration of the initial 0.3 mg/kg dose to 5% recovery of T1 and the times to recovery of TOF ratios of 70% and 90%. The 25%-75% recovery interval after discontinuation of the infusion ranged from 2.8 to 11.3 min. The time interval after administration of mivacurium 0.3 mg/kg to 5% recovery of T1 correlated with both the time to recovery of a TOF ratio of 70% and 90%. Recovery to a TOF of 90% after discontinuation of the infusion required approximately the same amount of time as recovery to 5% T1 after the administration of 0.3 mg/kg mivacurium. Each patient's recovery of neuromuscular function after discontinuation of a mivacurium infusion was related to his recovery after the administration of 0.3 mg/kg mivacurium. Therefore, the need for pharmacologic antagonism of block can be anticipated well before the end of an anesthetic. ⋯ Mivacurium (0.3 mg/kg) was administered to 38 patients. As they began to recover muscle strength, a mivacurium infusion was begun and later discontinued as surgery was nearing completion. Each patient's early recovery (administration to 5% recovery of T1) after the initial dose of mivacurium correlated well with more complete recovery of muscle strength after discontinuation of an infusion. This relationship enables early prediction of recovery speed after a mivacurium infusion.
-
Anesthesia and analgesia · Mar 1999
Clinical TrialTransesophageal echocardiographic detection of gas embolism and cardiac valvular dysfunction during laparoscopic nephrectomy.
We used transesophageal echocardiography (TEE) to monitor venous gas embolism, cardiac performance, and the hemodynamic effects of positioning and pneumoperitoneum in 16 healthy kidney donors undergoing laparoscopic nephrectomy. A four-chamber view was used continuously, except at predetermined intervals, when a complete TEE examination for cardiac function was performed. Other clinical variables recorded include systolic, diastolic, and mean arterial blood pressure; heart rate (HR), pulse oximetric saturations; and end-tidal CO2. Baseline valvular incompetence was seen in 13 of the 16 patients when supine and asleep. After positioning for surgery and induction of pneumoperitoneum, TEE revealed valvular incompetence with regurgitation more pronounced from baseline in 15 of the 16 patients. In one patient, during renal vein dissection, gas entered the right atrium from the inferior vena cava, worsening tricuspid regurgitation. Hemodynamic variables and ejection fraction were tested by using repeated-measures analysis of variance for significance (P < 0.05). Pneumoperitoneum increased (P < 0.05) systolic blood pressure (from 102.8 +/- 3.89 to 120.8 +/- 3.88 mm Hg) and HR (from 68.9 +/- 3.19 to 75.6 +/- 2.62). Ejection fraction was unchanged. The high incidence of valvular incompetence indicates that further studies are needed to assess these effects during laparoscopic nephrectomy with cardiac disease. ⋯ Laparoscopic surgery has gained popularity as a procedure for the removal of donated kidneys. Although the insufflation of gas necessary for this relatively simple approach poses a low risk of venous air embolism, it may increase the risk of changes in valvular competency.
-
Anesthesia and analgesia · Mar 1999
The effects of dexmedetomidine on neuromuscular blockade in human volunteers.
The neuromuscular effects of dexmedetomidine in humans are unknown. We evaluated the effect of dexmedetomidine on neuromuscular block and hemodynamics during propofol/alfentanil anesthesia. During propofol/alfentanil anesthesia, the rocuronium infusion rate was adjusted in 10 volunteers to maintain a stable first response (T1) in the train-of-four sequence at 50% +/- 3% of the pre-rocuronium value. Dexmedetomidine was then administered by computer-controlled infusion, targeting a plasma dexmedetomidine concentration of 0.6 ng/mL for 45 min. The evoked mechanical responses of the adductor pollicis responses (T1 response and T4/T1 ratio), systolic blood pressure (SBP), heart rate (HR), and transmitted light through a fingertip were measured during the dexmedetomidine infusion and compared with predexmedetomidine values using repeated-measures analysis of variance and Dunnett's test. Plasma dexmedetomidine levels ranged from 0.68 to 1.24 ng/mL. T1 values decreased during the infusion, from 51% +/- 2% to 44% +/- 9% (P < 0.0001). T4/T1 values did not change during the infusion. Plasma rocuronium concentrations increased during the infusion (P = 0.02). Dexmedetomidine increased SBP (P < 0.001) and decreased HR (P < 0.001) (5-min median values) during the infusion compared with values before the infusion. Dexmedetomidine increased the transmitted light through the fingertip by up to 41% +/- 8% during the dexmedetomidine infusion (P < 0.001).We demonstrated that dexmedetomidine (0.98 +/- 0.01 microg/kg) increased the plasma rocuronium concentration, decreased T1, increased SBP, and decreased finger blood flow during propofol/alfentanil anesthesia. We conclude that dexmedetomidine-induced vasoconstriction may alter the pharmacokinetics of rocuronium. ⋯ We studied the effect of an alpha2-agonist (dexmedetomidine) on rocuronium-induced neuromuscular block during propofol/alfentanil anesthesia. We found that the rocuronium concentration increased and the T1 response decreased during the dexmedetomidine administration. Although these effects were statistically significant, it is unlikely that they are of clinical significance.
-
Anesthesia and analgesia · Mar 1999
Minimum alveolar anesthetic concentration of volatile anesthetics in normal and cardiomyopathic hamsters.
Minimum alveolar anesthetic concentrations (MAC) values of volatile anesthetics in cardiovascular diseases remain unknown. We determined MAC values of volatile anesthetics in spontaneously breathing normal and cardiomyopathic hamsters exposed to increasing (0.1%-0.3% steps) concentrations of halothane, isoflurane, sevoflurane, or desflurane (n = 30 in each group) using the tail-clamp technique. MAC values and their 95% confidence interval were calculated using logistic regression. In normal hamsters, inspired MAC values were: halothane 1.15% (1.10%-1.20%), isoflurane 1.62% (1.54%-1.69%), sevoflurane 2.31% (2.22%-2.40%), and desflurane 7.48% (7.30%-7.67%). In cardiomyopathic hamsters, they were: halothane 0.89% (0.83%-0.95%), isoflurane 1.39% (1.30%-1.47%), sevoflurane 2.00% (1.85%-2.15%), and desflurane 6.97% (6.77%-7.17%). Thus, MAC values of halothane, isoflurane, sevoflurane, and desflurane were reduced by 23% (P < 0.05), 14% (P < 0.05), 13% (P < 0.05), and 7% (P < 0.05), respectively in cardiomyopathic hamsters. ⋯ Minimum alveolar anesthetic concentrations of volatile anesthetics were significantly lower in cardiomyopathic hamsters than in normal hamsters.
-
Anesthesia and analgesia · Mar 1999
The influence of anesthetic choice, PaCO2, and other factors on osmotic blood-brain barrier disruption in rats with brain tumor xenografts.
Increasing the delivery of therapeutic drugs to the brain improves outcome for patients with brain tumors. Osmotic opening of the blood-brain barrier (BBB) can markedly increase drug delivery, but achieving consistent, good quality BBB disruption (BBBD) is essential. We evaluated four experiments compared with our standard isoflurane/O2 protocol to improve the quality and consistency of BBBD and drug delivery to brain tumor and normal brain in a rat model. Success of BBBD was assessed qualitatively with the large molecular weight marker Evans blue albumin and quantitatively by measuring delivery of the low molecular weight marker [3H]-methotrexate. With isoflurane/O2 anesthesia, the effects of two BBBD drugs of different osmolalities were evaluated at two different infusion rates and infusion durations. Arabinose was superior to saline (P = 0.006) in obtaining consistent Evans blue staining in 16 of 24 animals, and it significantly increased [3H]-methotrexate delivery compared with saline in the tumor (0.388 +/- 0.03 vs 0.135 +/-0.04; P = 0.0001), brain around the tumor (0.269 +/- 0.03 vs 0.035 +/- 0.03; P = 0.0001), brain distant to the tumor (0.445 +/- 0.05 vs 0.034 +/- 0.07; P = 0.001), and opposite hemisphere (0.024 +/- 0.00 vs 0.016 +/- 0.00; P = 0.0452). Forty seconds was better than 30 s (P = 0.0372) for drug delivery to the tumor. Under isoflurane/O2 anesthesia (n = 30), maintaining hypocarbia was better than hypercarbia (P = 0.025) for attaining good BBBD. A propofol/ N2O regimen was compared with the isoflurane/O2 regimen, altering blood pressure, heart rate, and PaCO2 as covariates (n = 48). Propofol/N2O was superior to isoflurane/O2 by both qualitative and quantitative measures (P < 0.0001). Neurotoxicity and neuropathology with the propofol/N2O regimen was evaluated, and none was found. These data support the use of propofol/N2O along with maintaining hypocarbia to optimize BBBD in animals with tumors. ⋯ Propofol/N2O anesthesia may be better than isoflurane/O2 for optimizing osmotic blood-brain barrier disruption for delivery of chemotherapeutic drugs to brain tumor and normal brain.