Anesthesia and analgesia
-
Anesthesia and analgesia · Feb 2015
Acute Ketamine Impairs Mitochondrial Function and Promotes Superoxide Dismutase Activity in the Rat Brain.
Ketamine is often associated with altered mitochondrial function and oxidative stress. Nevertheless, limited data are still available regarding the in vivo action of ketamine in mitochondrial bioenergetics and redox state. Accumulating evidence supports a role for nitric oxide (NO) as a possible modulator of ketamine's side effects. In the present study, we investigated the role of NO modulation on ketamine anesthesia at the level of brain mitochondrial function and redox status. ⋯ Acute ketamine administration impaired the function of mitochondrial complex I leading to increased mtNOS activity, increased generation of hydrogen peroxide and NO, resulting in superoxide dismutase triggering, and improved antioxidant activity. The present findings clarify the role of NO modulation in ketamine anesthesia, providing new data on a relevant clinical mechanism.
-
Anesthesia and analgesia · Feb 2015
Randomized Controlled Trial Comparative StudyThe Effectiveness of Oxygen Delivery and Reliability of Carbon Dioxide Waveforms: A Crossover Comparison of 4 Nasal Cannulae.
Effective O2 delivery and accurate end-tidal CO2 (ETCO2) sampling are essential features of nasal cannulae (NCs) in patients with compromised respiratory status. We studied 4 NC designs: bifurcated nasal prongs (NPs) with O2 delivery and CO2 sensing in both NPs (Hudson), separate O2/CO2 NPs (Salter), and CO2 sensing in NPs with cloud O2 delivery outside the NPs via multi vents (Oridion) and dual vents (Medline). We hypothesized that design differences between NCs would influence O2 delivery and ETCO2 detection. ⋯ NCs provide supplemental inspired O2 concentrations for patients with impaired pulmonary function. Accurate measures of ETCO2 are helpful in assessing respiratory rate and determining whether CO2 retention is occurring from hypoventilation. These findings suggest the NC with separate NPs was the most effective in delivering O2 and the most consistent at providing reliable CO2 waveforms at higher FGFs.
-
Anesthesia and analgesia · Feb 2015
ReviewAn update of the role of Renin Angiotensin in cardiovascular homeostasis.
The renin angiotensin system (RAS) is thought to be the body's main vasoconstrictor system, with physiological effects mediated via the interaction of angiotensin II with angiotensin I receptors (the "classic" RAS model). However, since the discovery of the heptapeptide angiotensin 1-7 and the development of the concept of the "alternate" RAS system, with its ability to reduce arterial blood pressure, our understanding of this physiologic system has changed dramatically. In this review, we focus on the newly discovered functions of the RAS, particularly the potential clinical significance of these developments, especially in the realm of new pharmacologic interventions for treating cardiovascular disease.