Anesthesia and analgesia
-
Anesthesia and analgesia · Jun 2015
Comparative StudyInfusion System Carrier Flow Perturbations and Dead-Volume: Large Effects on Drug Delivery In Vitro and Hemodynamic Responses in a Swine Model.
We have previously shown that, at constant carrier flow, drug infusion systems with large dead-volumes (V) slow the time to steady-state drug delivery in vitro and pharmacodynamic effect in vivo compared to those with smaller V. In this study, we tested whether clinically relevant alterations in carrier flow generate perturbations in drug delivery and pharmacodynamic effect, and how these might be magnified when V is large. ⋯ Stopping and resuming a carrier flow, or introducing a second medication infusion, impacts drug delivery in vitro and biologic response in vivo. Infusion systems with small dead-volumes minimize these perturbations and dampen the resulting hemodynamic instability. Alterations in carrier flow impact drug delivery, resulting in substantial effects on physiologic responses. Therefore, infusion systems for vasoactive drugs should be configured with small V when possible.
-
Because anesthetic machines have become more complex and more expensive, they have become less suitable for use in the many isolated hospitals in the poorest countries in the world. In these situations, they are frequently unable to function at all because of interruptions in the supply of oxygen or electricity and the absence of skilled technicians for maintenance and servicing. Despite these disadvantages, these machines are still delivered in large numbers, thereby expending precious resources without any benefit to patients. ⋯ Additional economies are achieved by completely eliminating spillage of oxygen from the breathing system and by recycling the driving gas into the breathing system to increase the Fraction of Inspired Oxygen (FIO2) at no extra cost. Savings also are accrued when using the drawover breathing system as the need for nitrous oxide, compressed air, and soda lime are eliminated. The Glostavent enables the administration of safe anesthesia to be continued when standard machines are unable to function and can do so with minimal harm to the environment.