Anesthesia and analgesia
-
Anesthesia and analgesia · Sep 2016
PICK1 Regulates the Expression and Trafficking of AMPA Receptors in Remifentanil-Induced Hyperalgesia.
Remifentanil is used widely in clinical anesthesia because it induces more rapid and more common hyperalgesia than other opioid analgesics. Activation of N-methyl-D-aspartate (NMDA) receptors takes a pivotal part in remifentanil-induced hyperalgesia. Like NMDA receptors, the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are excitatory ion glutamate receptors in postsynaptic membrane, which are involved in the transmission of both acute and chronic pain. Protein interacting with C kinase 1 (PICK1) plays an important role in NMDA receptor-mediated internalization of glutamate receptor 2 (GluR2)-containing AMPARs and contributes to the induction and maintenance of inflammation-induced pain. This study aimed to test the hypothesis that PICK1 contributes to remifentanil-induced hyperalgesia by regulating AMPAR expression and trafficking in the spinal cord. ⋯ These results indicate that PICK1 deficiency might reverse remifentanil-induced hyperalgesia through regulating GluR2-containing AMPAR expression and trafficking in the spinal cord dorsal horn.
-
Anesthesia and analgesia · Sep 2016
A Brief Period of Hypothermia Induced by Total Liquid Ventilation Decreases End-Organ Damage and Multiorgan Failure Induced by Aortic Cross-Clamping.
In animal models, whole-body cooling reduces end-organ injury after cardiac arrest and other hypoperfusion states. The benefits of cooling in humans, however, are uncertain, possibly because detrimental effects of prolonged cooling may offset any potential benefit. Total liquid ventilation (TLV) provides both ultrafast cooling and rewarming. In previous reports, ultrafast cooling with TLV potently reduced neurological injury after experimental cardiac arrest in animals. We hypothesized that a brief period of rapid cooling and rewarming via TLV could also mitigate multiorgan failure (MOF) after ischemia-reperfusion induced by aortic cross-clamping. ⋯ A brief period of ultrafast cooling with TLV followed by rapid rewarming attenuated biochemical and histological markers of MOF after aortic cross-clamping. Cardiovascular and liver dysfunctions were limited by a brief period of hypothermic TLV, even when started after reperfusion. Conversely, acute kidney injury was limited only when hypothermia was started before reperfusion. Further work is needed to determine the clinical significance of our results and to identify the optimal duration and timing of TLV-induced hypothermia for end-organ protection in hypoperfusion states.
-
Anesthesia and analgesia · Sep 2016
The Antiallodynic Effects of Nefopam Are Mediated by the Adenosine Triphosphate-Sensitive Potassium Channel in a Neuropathic Pain Model.
Nefopam hydrochloride is a centrally acting compound that induces antinociceptive and antihyperalgesic properties in neuropathic pain models. Previous reports have shown that activation of adenosine triphosphate (ATP)-sensitive and calcium-activated potassium (KATP and KCa2+) channels has antiallodynic effects in neuropathic pain. In the present study, we evaluated the relationship between potassium channels and nefopam to determine whether the antiallodynic effects of nefopam are mediated by potassium channels in a neuropathic pain model. ⋯ The antiallodynic effects of nefopam are increased by a KATP channel agonist and reversed by a KATP channel antagonist. These data suggest that the KATP channel is involved in the antiallodynic effects of nefopam in a neuropathic pain model.