Anesthesia and analgesia
-
Anesthesia and analgesia · Sep 1997
Comparative StudyContinuous cardiac output monitoring during adult liver transplantation: thermal filament technique versus bolus thermodilution.
Continuous thermodilution (CT) using a pulmonary artery (PA) catheter with a thermal filament has the potential for intraoperative on-line monitoring of cardiac output. Liver transplantation frequently requires rapid fluid administration and often includes the use of an extracorporeal veno-venous bypass. To assess the agreement between CT and bolus thermodilution (BT) in such a setting, we conducted a prospective intraoperative study in 14 liver transplant patients. Throughout the operation, CT cardiac output was recorded and paired with BT measurements taken every 30 min and whenever indicated for clinical reason. Corresponding data were assigned to acquisition periods when patients were on or off veno-venous bypass (flow rate 2.5 +/- 0.2 L/min) and were discriminated by the various range of intravenous infusion rates (< 150 mL/h, 150-1000 mL/h, 1000-2000 mL/h, and 2000-4000 mL/h) and the magnitude of cardiac output (< or = 7.5 L/min, 7.5-10.0 L/min, > 10.0 L/min). A total of 270 data pairs was obtained and examined by analysis of agreement (mean difference +/- SD), variance, error, and weighted regression. Trend analysis was performed for significant CT and BT cardiac output changes, defined as changes greater than 15%. Agreement of both methods was best at peripheral intravenous fluid infusion rates < or = 1000 mL/h and BT cardiac output > 10 L/min (0.0 +/- 0.6 L/min) and was unaffected by veno-venous bypass. Discrepancy was most evident at intravenous fluid infusion rates > 2000 mL/h and BT cardiac output < or = 7.5 L/min (2.1 +/- 1.7 L/min). Correlation of CT and BT cardiac output was excellent (r = 0.95, P < 0.001) for combined data from all patients. Changes in CT cardiac output > 15% (n = 116) correctly indicated the direction in 93% of BT cardiac output changes and were 74% sensitive and 75% specific for significant BT cardiac output changes. The thermal filament technique enhances the usefulness of PA catheterization during liver transplantation but reflects BT cardiac output with clinically acceptable error only at low peripheral intravenous fluid infusion rates. ⋯ Cardiac output determines organ perfusion. In clinical practice, it is measured by intermittent thermodilution using right heart catheterization. This intraoperative study compared the intermittent method with a technique based on continuous thermodilution. The new technique provides logistical advantages and challenges the accuracy of the intermittent method during liver transplantation.
-
Anesthesia and analgesia · Sep 1997
The effect of GP683, an adenosine kinase inhibitor, on the desflurane anesthetic requirement in dogs.
The availability of an analgesic compound devoid of the side effects associated with the commonly used opioid and nonsteroidal antiinflammatory drugs would be useful during the perioperative period. Although adenosine has analgesic and anesthetic-sparing properties, it also produces dose-dependent cardiovascular depression. Inhibitors of adenosine kinase may be able to provide analgesia without producing acute cardiovascular or respiratory depression. This preliminary study investigated the effects of a novel adenosine kinase-inhibiting drug, GP683, on the minimum alveolar anesthetic concentration (MAC) of desflurane in dogs. Seven mongrel dogs were administered one of three different GP683 dose regimens (or the solvent) by intravenous infusion on separate occasions according to a cross-over study design. After determining the baseline desflurane MAC value, GP683 was infused at 75, 150, or 300 microg x kg(-1) x min(-1) for 5 min as a loading dose, followed by 15, 30, or 60 microg x kg(-1) x min(-1) for an additional 85 min to maintain a stable plasma drug level. The desflurane MAC was redetermined 30-90 min after starting the study drug or vehicle infusion, and 30-90 min and 120-180 min after termination of the infusion. Cardiovascular variables and plasma concentrations of GP683 were determined at specific intervals before, during, and after the MAC determinations. The three GP683 dose regimens produced 22%, 31%, and 50% decreases in the desflurane MAC, respectively. In addition, there was good correlation between the decrease in desflurane MAC and the plasma GP683 concentration (r = -0.78). Although the mean arterial pressure (MAP) was decreased up to 25% by the highest infusion rate of GP683, adjustments in the desflurane concentration to an equi-MAC value resulted in normalization of the MAP values. Furthermore, GP683 produced no changes in heart rate. In conclusion, the adenosine kinase-inhibiting drug, GP683, produced dose-dependent decreases in the desflurane MAC of dogs without producing untoward hemodynamic changes. ⋯ An investigational drug (GP683) that can increase the levels of an important endogenous substance in the body (adenosine) has been found to decrease the anesthetic requirement in dogs without producing adverse effects on the cardiovascular system.
-
Anesthesia and analgesia · Sep 1997
Comparative StudyThe impact of choice of muscle relaxant on postoperative recovery time: a retrospective study.
To test the hypothesis that the use of long-acting muscle relaxants is associated with prolonged postoperative recovery when compared with the use of shorter-acting relaxants, we undertook a retrospective study of 270 patients with induced paralysis recovering from general anesthesia. We calculated the mean recovery time associated with each muscle relaxant used. Regression analyses were performed to control for potential confounding of the results by length and type of surgery, as well as age and sex. Taking these into account, the adjusted difference in mean recovery time between patients receiving short- and intermediate-acting relaxants (mivacurium, atracurium, and vecuronium) versus those receiving long-acting relaxants (d-tubocurarine, pancuronium, and pancuronium and d-tubocurarine combination) was 30 min (95% confidence interval [CI] 8-53). The adjusted difference in mean recovery time between patients receiving vecuronium and those receiving pancuronium (i.e., the single most frequently used drug in each category) was 33 min (95% CI 1-66). Shortened recovery time accounted for an estimated average $37.95 decrease in recovery room charge per patient when vecuronium was used instead of pancuronium, versus a $22.84 increase in drug cost. Our data and analyses support the hypothesis that the use of long-acting muscle relaxants is associated with prolonged recovery after surgery and provide preliminary evidence that restricting the use of the more expensive, shorter-acting muscle relaxants may represent a false economy. ⋯ In this retrospective study, the use of old-fashioned, inexpensive, long-acting paralyzing drugs was found to be associated with prolonged postoperative recovery. This has implications when deciding whether, as an economic measure, to restrict the use of the more expensive, shorter-acting paralyzing drugs, because prolonged recovery also has a price.
-
Anesthesia and analgesia · Sep 1997
Antithrombin III during cardiac surgery: effect on response of activated clotting time to heparin and relationship to markers of hemostatic activation.
This study was designed to determine if, and to what extent, antithrombin III (AT) levels affect the response of the activated clotting time (ACT) to heparin in concentrations used during cardiac surgery, and to characterize the relationship between AT levels and markers of activation of coagulation during cardiopulmonary bypass (CPB). After informed consent, blood specimens obtained from eight normal volunteers (Phase I) were used to measure the response of the kaolin and celite ACT to heparin after in vitro addition of AT (200 U/dL) and after dilution with AT-deficient plasma to yield AT concentrations of 20, 40, 60, 80, and 100 U/dL. In Phase II, blood specimens collected before the administration of heparin and prior to discontinuation of CPB, were used to measure the response of the kaolin ACT to heparin (preheparin only), AT concentration, and a battery of coagulation assays in 31 patients undergoing repeat or combined cardiac surgical procedures. In Phase I, strong linear relationships were observed between kaolin (slope = 1.04 AT - 2, r2 = 0.78) and celite (slope = 1.36 AT + 6, r2 = 0.77) ACT slopes and AT concentrations below 100 U/dL. In the pre-CPB period of Phase II, only factors V (partial r = -0.49) and VIII (partial r = -0.63) were independently associated with heparin-derived slope using multivariate analysis; an inverse relationship was observed between AT and fibrinopeptide A levels (r = -0.41) at the end of CPB. Our findings indicate that the responsiveness of whole blood (ACT) to heparin at the high concentrations used with CPB is progressively reduced when the AT concentration decreases below 80 U/dL. Because AT is variably, and sometimes extensively, reduced in many patients before and during CPB, AT supplementation in these patients might be useful in reducing excessive thrombin-mediated consumption of labile hemostatic blood components, excessive microvascular bleeding, and transfusion of blood products. ⋯ Heparin, a drug with anticoagulant properties, is routinely given to patients undergoing cardiac surgery to prevent clot formation within the cardiopulmonary bypass circuit. However, when levels are reduced, heparin is not as effective. Findings within this study indicate that administration of antithrombin III may help to preserve the hemostatic system during cardiopulmonary bypass.
-
Anesthesia and analgesia · Sep 1997
Context-sensitive half-times and other decrement times of inhaled anesthetics.
The length of anesthetic administration influences the rate at which concentrations of anesthetics decrease after their discontinuation. This is true for both intravenous (I.V.) and inhaled anesthetics. This has been explored in detail for I.V. anesthetics using computer simulation to calculate context-sensitive half-times (the time needed for a 50% decrease in anesthetic concentration) and other decrement times (such as the times needed for 80% or 90% decreases in anesthetic concentration). However, decrement times have not been reported for inhaled anesthetics. In this report, published pharmacokinetic parameters and computer simulation were used to compare the context-sensitive half-times and the 80% and 90% decrement times of the expected central nervous system concentrations for enflurane, isoflurane, sevoflurane, and desflurane. The context-sensitive half-times for all four anesthetics are small (<5 min) and do not increase significantly with increasing duration of anesthesia. The 80% decrement times of both sevoflurane and desflurane are also small (<8 min) and do not increase significantly with duration of anesthesia. However, the 80% decrement times of isoflurane and enflurane increase significantly after approximately 60 min of anesthesia, reaching plateaus of approximately 30 and 35 min. The 90% decrement time of desflurane increased slightly from 5 min after 30 min of anesthesia to 14 min after 6 h of anesthesia. It remained significantly less than the 90% decrement times of sevoflurane, isoflurane, and enflurane, which reached values of 65 min, 86 min, and 100 min, respectively, after 6 h of anesthesia. ⋯ The major differences in the rates at which desflurane, sevoflurane, isoflurane, and enflurane are eliminated occur in the final 20% of the elimination process.