Epilepsia
-
Review Case Reports
Depths and grids in brain tumors: implantation strategies, techniques, and complications.
Patients with intracranial mass lesions are at increased risk of intractable epilepsy even after tumor resection due to the potential epileptogenicity of lesional and perilesional tissue. Risk factors for tumoral epilepsy include tumor location, histology, and extent of tumor resection. In epilepsy that occurs after tumor resection, the epileptogenic zone often does not correspond precisely with the area of abnormality on imaging, and seizures often arise from a relatively restricted area despite widespread changes on imaging. ⋯ Subdural grids offer excellent contiguous coverage of superficial cortex and allow resection using the same craniotomy, facilitating understanding of anatomic relationships. Depth electrodes offer superior coverage of deep structures, are easier to use in cases where a previous craniotomy is present, are not associated with anatomic distortion due to brain shift, and may be associated with a lower complication rate. We review the biology of focal postoperative epilepsy and invasive diagnostic strategies for the surgical evaluation of medically refractory epilepsy in patients who have undergone resection of intracranial mass lesions.
-
Neurobehavioral comorbidities are common in pediatric epilepsy with enduring adverse effects on functioning, but their neuroanatomic underpinning is unclear. Striatal and thalamic abnormalities have been associated with childhood-onset epilepsies, suggesting that epilepsy-related changes in the subcortical circuit might be associated with the comorbidities of children with epilepsy. We aimed to compare subcortical volumes and their relationship with age in children with complex partial seizures (CPS), childhood absence epilepsy (CAE), and healthy controls (HC). We examined the shared versus unique structural-functional relationships of these volumes with behavior problems, intelligence, language, peer interaction, and epilepsy variables in these two epilepsy syndromes. ⋯ Our study is the first to directly compare and detect shared thalamic structural abnormalities in children with CPS and CAE. These findings highlight the vulnerability of the thalamus and provide important new insights on its possible role in the neurobehavioral comorbidities of childhood-onset epilepsy.
-
Hippocampal sclerosis, a common cause of refractory focal epilepsy, requires hippocampal volumetry for accurate diagnosis and surgical planning. Manual segmentation is time-consuming and subject to interrater/intrarater variability. Automated algorithms perform poorly in patients with temporal lobe epilepsy. We validate and make freely available online a novel automated method. ⋯ We demonstrate reliable identification of hippocampal atrophy in patients with hippocampal sclerosis, which is crucial for clinical management of epilepsy, particularly if surgical treatment is being contemplated. We provide a free online Web-based service to enable hippocampal volumetry to be available globally, with consequent greatly improved evaluation of those with epilepsy.
-
Randomized Controlled Trial Multicenter Study
A double-blind, randomized, placebo-controlled trial of a diazepam auto-injector administered by caregivers to patients with epilepsy who require intermittent intervention for acute repetitive seizures.
A diazepam auto-injector (AI) has been developed for intramuscular administration to treat acute repetitive seizures (ARS). The objective of this study was to evaluate the efficacy and safety of the diazepam AI when administered by caregivers to control an episode of ARS. ⋯ The diazepam AI was significantly more effective than placebo AI at delaying the next seizure or rescue. Secondary efficacy end points were generally supportive of the primary outcome. Diazepam AI administered by trained caregivers was effective for the treatment of ARS and was well-tolerated, with a safety profile similar to placebo.
-
Up to 40% of patients with temporal lobe epilepsy (TLE) are refractory to medication. Surgery is an effective treatment but may cause new neurologic deficits including visual field deficits (VFDs). The ability to drive after surgery is a key goal, but a postoperative VFD precludes driving in 4-50% of patients even if seizure-free. ⋯ The optic radiation can be delineated in vivo using diffusion tensor imaging tractography, which has been shown to be useful in predicting the postoperative VFDs and in surgical planning. These data are now being used for surgical guidance with the aim of reducing the severity of VFDs. Compensation for brain shift occurring during surgery can be performed using intraoperative magnetic resonance imaging (MRI), but the additional utility of this expensive technique remains unproven.