Military medicine
-
Lung injury has several inciting etiologies ranging from trauma (contusion and hemorrhage) to ischemia reperfusion injury. Reflective of the injury, tissue and cellular injury increases proportionally with the injury stress and is an area of potential intervention to mitigate the injury. This study aims to evaluate the therapeutic benefits of recombinant human MG53 (rhMG53) protein in porcine models of acute lung injury (ALI). ⋯ MG53 is an endogenous protein that circulates in the bloodstream. Therapeutic treatment with exogenous rhMG53 may be part of a strategy to restore (partially or completely) structural morphology and/or functional lung integrity. Systemic administration of rhMG53 constitutes a potential effective therapeutic means to combat ALI.
-
Rapid sequence intubation of patients experiencing traumatic hemorrhage represents a precarious phase of care, which can be marked by hemodynamic instability and pulseless arrest. Military combat trauma guidelines recommend reduced induction dose and early blood product resuscitation. Few studies have evaluated the role of induction dose and preintubation transfusion on hemodynamic outcomes. We compared rates of postintubation systolic blood pressure (SBP) of < 70 mm Hg, > 30% drop in SBP, pulseless arrest, and mortality at 24 hours and 30 days among patients who did and did not receive blood products before intubation and then examined if induction agent and dose influenced the same outcomes. ⋯ Within the context of this historical cohort, the early use of blood products conferred a statistically significant benefit in reducing postintubation hypotension and pulseless arrest among combat trauma victims exposed to traumatic hemorrhage. Induction agent choice and dose did not significantly influence the hemodynamic or mortality outcomes.
-
The ability to accurately detect hypotension in trauma patients at the earliest possible time is important in improving trauma outcomes. The earlier an accurate detection can be made, the more time is available to take corrective action. Currently, there is limited research on combining multiple physiological signals for an early detection of hemorrhagic shock. We studied the viability of early detection of hypotension based on multiple physiologic signals and machine learning methods. We explored proof of concept with a small (5 minutes) prediction window for application of machine learning tools and multiple physiologic signals to detecting hypotension. ⋯ In this research, we explored the viability of early detection of hypotension based on multiple signals in a preexisting animal hemorrhage dataset. The results show that a multivariate approach might be more effective than univariate approaches for this detection task.
-
During training and combat operations, military personnel may be exposed to repetitive low-level blast while using explosives to gain entry or by firing heavy weapon systems such as recoilless weapons and high-caliber sniper rifles. This repeated exposure, even within allowable limits, has been associated with cognitive deficits similar to that of accidental and sports concussion such as delayed verbal memory, visual-spatial memory, and executive function. This article presents a novel framework for accurate calculation of the human body blast exposure in military heavy weapon training scenarios using data from the free-field and warfighter wearable pressure sensors. ⋯ This framework has numerous advantages including easier model setup and shorter simulation times. The framework is an important step towards developing an advanced field-applicable technology to monitor low-level blast exposure during heavy weapon military training and combat scenarios.
-
Comparative Study
A Comparison of Nonhuman Primate Injuries in Horizontal Versus Vertical Sled +Gz (Head-to-Foot) Impact Accelerations.
Accelerative events commonly expose military pilots to potentially injurious + Gz (axial, caudal to cranial) accelerations. The Naval Biodynamics Laboratory exposed nonhuman primates (NHPs) to + Gz loading in two subject orientations (supine or upright) to assess the effect of orientation and accelerations associated with injury at accelerations unsafe for human participation. ⋯ Axial loading to supine occupants produced more CNS injuries, whereas upright produced more MSK injuries. Both orientations produced equal THR injuries. NHP injuries reported reflected those reported following human + Gz acceleration events, highlighting the importance of orientation during acceleration to mitigate injury for next generation equipment design and testing.