Military medicine
-
Musculoskeletal injury to extremities is a common issue for both stateside and deployed military personnel, as well as the general public. Superposition of anatomy can make diagnosis difficult using standard clinical techniques. There is a need for increased diagnostic accuracy at the point-of-care for military personnel in both training and operational environments, as well as assessment during follow-up treatment to optimize care and expedite return to service. Orthopedic tomosynthesis is rapidly emerging as an alternative to digital radiography (DR), exhibiting an increase in sensitivity for some clinical tasks, including diagnosis and follow-up of fracture and arthritis. Commercially available digital tomosynthesis systems are large complex devices. A compact device for extremity tomosynthesis (TomoE) was previously demonstrated using carbon nanotube X-ray source array technology. The purpose of this study was to prepare and evaluate the prototype device for an Institutional Review Board-approved patient wrist imaging study and provide initial patient imaging results. ⋯ The TomoE device image quality has been evaluated using cadaveric specimens. Dose was calibrated for a patient imaging study. Initial patient images depict a high level of anatomical detail and an increase in diagnostic value compared to DR.
-
Vancomycin-resistant enterococci (VRE) are classified by the Centers for Diseases Control and Prevention as a serious antibiotic resistance threat. Our study aims to characterize the epidemiology, associated conditions, and outcomes of VRE infections among hospitalized patients in the U.S. military health system (MHS). ⋯ VRE infections carry a considerable burden for hospitalized patients given their impact on length of stay, hospitalization costs, and in-hospital mortality. Active surveillance and infection control efforts should target those identified as high-risk for VRE infection. Antimicrobial stewardship programs should focus on limiting exposure to 4th generation cephalosporins.
-
Successful tourniquet application increases survival rate of exsanguinating extremity hemorrhage victims. Tactile feedback during tourniquet application training should reflect human tissue properties in order to increase success in the field. This study aims to understand the mechanical properties of a human limb during tourniquet application. ⋯ Simulation of tissue compression during tourniquet application may be achieved with a material exhibiting elastic properties to mimic the force-displacement behavior seen in cadaveric tissue or with different layers of material. Different trainers for underweight, healthy, and overweight limbs may not be needed. Separate tourniquet training fixtures should be created for the upper and lower extremities.
-
Between 2001 and 2015, 2.77 million U.S. military service members completed over 5 million deployments to Southwest Asia. There are concerns that deployment-related environmental exposures may be associated with adverse pulmonary health outcomes. Accurate pulmonary diagnosis often requires histopathological biopsy. These lung biopsies are amenable to chemical analysis of retained particulates using scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDXA). ⋯ Scanning electron microscopy with energy dispersive X-ray particle analysis of inhaled particulates retained in lung tissue from deployed service members identifies particles commonly present in inhaled dust. In this small case series, we were not able to detect particle profiles that were common and unique to deployed patients only.
-
Soldiers are expected to deploy worldwide and must be medically ready in order to accomplish their mission. Soldiers unable to deploy for an extended period of time because of chronic pain or other conditions undergo an evaluation for medical retirement. A retrospective analysis of existing longitudinal data from an Interdisciplinary Pain Management Center (IPMC) was used to evaluate the temporal relationship between the time of initial duty restriction and referral for comprehensive pain care to being evaluated for medical retirement. ⋯ A longer duration between initial duty restriction and referral to IPMC was associated with higher odds of subsequent P3 status for up to 19 months. Referral to an IPMC for comprehensive pain care early in the course of chronic pain conditions may reduce the likelihood of P3 profile and eventual medical retirement of soldiers.