Military medicine
-
Addressing hazing within the U.S. Military has become a critical concern to safeguard the well-being of service members; recent attempts to assess hazing prevalence in the military have been unsuccessful due to under representative data. ⋯ Distinct elements of military culture, such as the hierarchical chain of command, loyalty to the brotherhood/sisterhood, and the emphasis on resilience, likely amplify these responses. This study adds to the mounting evidence showcasing gaps in assessing hazing within the U.S. Military. It emphasizes the necessity for a comprehensive hazing prevention program. Presently, prevention relies on mandatory training, often integrated into safety briefings or harassment workshops. However, service members require further assistance in recognizing, rejecting, and reporting instances of hazing despite these trainings.
-
Mental health diagnosis requiring further treatment is one of the top reasons for medical evacuation in the U.S. Central Command (USCENTCOM) area of responsibility (AOR) as of 2022. This study establishes a baseline in which the effectiveness of medical interventions can be measured to determine if they have an impact on the rate of evacuation out of USCENTCOM. ⋯ The study establishes a benchmark mental health evacuation rate. This rate will be useful for assessing mental health evacuation reduction initiatives in the USCENTCOM AOR.
-
Musculoskeletal injuries (MSKIs) among active duty soldiers result in more than 10 million limited duty days each year and account for more than 70% of the medically nondeployable population. Overuse injuries in lower limbs from running, foot marching long distances with heavy loads, and lifting heavy objects are the most common types of injuries in the military. Physical training and rehabilitation exercises for greater resiliency through aerobic, muscle strength, endurance, and agility conditioning programs can prevent or reduce the effects of MSKIs if Soldiers adhere to proper biomechanics and training techniques. We are introducing a three-dimensional (3D) camera-based platform for Optical Screening and Conditioning for Injury Resilience (OSCIR) that is designed to identify and correct high-risk movement patterns based on quantifiable biomechanical measurements in clinical or field settings. Our goal is to improve resilience to MSKI by offering greater access to quality of movement skills in warfighters through an autonomous device that can be used in Sports Medicine and Reconditioning Team (SMART) clinics and High-Intensity Tactical Training (HITT) sites. ⋯ Our study describes the integration process for a 3D camera-based clinical system for MSKI conditioning and rehabilitation. The impact of our system will enable key stakeholders in the military to manage MSKIs in warfighters by automating key assessment and rehabilitation test batteries; making tests more readily accessible, and interpretations more accurate by providing objective biomechanical measures. OSCIR is undergoing turn-key design features to serve as a screening tool for warfighters to readily assess susceptibility to MSKI or as a training platform to help guide exercise techniques to achieve resiliency against future injuries.
-
Vection is a stationary individual's illusory experience of self-motion. This illusory self-motion is operationally important for aviation, particularly military aviation, since vection is a dramatic example of spatial disorientation (SD), which is an individual's failure to correctly sense the aircraft's position, motion, and/or attitude with respect to the fixed coordinate system of the Earth's surface and its gravitational vertical. Notably, SD is a major cause of fatal aviation mishaps, and the visual system is particularly prone to provoking vection. This article describes the Virtual Reality Vection System (VRVS), which uses computer-controlled virtual reality technology to induce vection under controlled conditions for training, demonstration, testing, and research. ⋯ The VRVS is currently used to research, develop, test, and evaluate mitigation strategies targeting vection-related SD in degraded visual environments. Similarly, the VRVS is supporting research to develop methods to predict individual differences in visually induced motion sickness susceptibilities. The VRVS is currently being integrated with a precision motor-controlled rotating Barany chair for multisensory studies. It should be noted that since the VRVS was developed to support United States Army Aeromedical Research Laboratory projects, it is an Army product representing government intellectual property and may be freely available to other government institutions.
-
Auditory injuries induced by repeated exposures to blasts reduce the operational performance capability and the life quality of military personnel. The treatment for blast-induced progressive hearing damage is lacking. We have recently investigated the therapeutic function of liraglutide, a glucagon-like peptide-1 receptor agonist, to mitigate blast-induced hearing damage in the animal model of chinchilla, under different blast intensities, wearing earplugs (EPs) or not during blasts, and drug-treatment plan. The goal of this study was to investigate the therapeutical function of liraglutide by comparing the results obtained under different conditions. ⋯ This study indicated that the liraglutide mitigated the blast-induced auditory injuries. In EP ears, the pre-blast administration of liraglutide reduced the severity of blast-induced acute damage in ears with EP protection, especially under G2. In animals with open ears, the effect of liraglutide on the restoration of hearing increased with time. The liraglutide potentially benefits post-blast hearing through multiple approaches with different mechanics.