Military medicine
-
In light of the COVID-19 (Coronovirus Disease 2019) pandemic, the use of personal protective equipment has become essential to reduce viral transmission and maintain public health. Viruses, particularly human coronavirus and influenza, pose significant challenges because of their various transmission routes. UMF Corporation's innovation, Micrillon, aims to address these challenges by creating durable, antiviral technology for textiles without harmful chemicals, reducing viral transmission risks. ⋯ The study demonstrates that Micrillon technology effectively inhibits viral activity, particularly in gloves, fabrics, and fibers. The innovation not only shows high antiviral efficacy against both Human Coronavirus and Influenza but also promises a reusable, sustainable solution, mitigating environmental impact and reducing the use of harmful chemicals in personal protective equipment. The technology holds promise for widespread use in health care and hospitality, offering a layer of protection while being environmentally conscious. Further development of such technologies can significantly reduce infection risks while minimizing environmental harm.
-
Acute Compartment Syndrome (ACS) is a severe trauma caused by elevated intra-muscle-compartment pressure (ICP). The current standard method for diagnosis is to insert a needle into the muscle sterilely under anesthesia. However, to secure the environment is sometimes not easy and leads to delays in diagnosis. Recently, we have focused on shear wave ultrasound elastography (SWE) as an alternative, which can be done concisely in unclean environment and without anesthesia. We would like to report the usefulness of SWE for ACS diagnosis using 2-pedal walking turkey model recently developed in our lab. ⋯ SWE seems to be a substitute measure of ICP in diagnosing ACS. With regard to our in vivo ACS model using turkey, survival at 50 mmHg ICP for 6 hours and 6 weeks post ACS would be an appropriate situation.
-
A number of reports over the past 2 decades have provided recommendations for reducing the rate of suicide in the U.S. Armed Forces. Notwithstanding their veracity, few of these recommendations have been fully implemented. ⋯ Implementation of recommendations to reduce suicide deaths in the military must go through several deliberative steps in order to be prioritized, funded, and ultimately adopted by the military. As researchers and external stakeholders become more familiar with this process, recommendations for future prevention activities can better overcome barriers to implementation.
-
Military members and first responders may, at moment's notice, be asked to assist in incidents that may result in radiation exposure such as Operation Tomadachi in which the U.S. Navy provided significant relief for the Fukushima Daiichi Nuclear Reactor accident in Japan after an earthquake and tsunami in 2011. We are also currently facing potential threats from nuclear power plants in the Ukraine should a power disruption to a nuclear plant interfere with cooling or other safety measures. Exposure to high doses of radiation results in acute radiation syndrome (ARS) characterized by symptoms arising from hematopoietic, gastrointestinal, and neurovascular injuries. Although there are mitigators FDA approved to treat ARS, there are currently no FDA-approved prophylactic medical interventions to help protect persons who may need to respond to radiation emergencies. There is strong evidence that manganese (Mn) has radiation protective efficacy as a promising prophylactic countermeasure. ⋯ Initial experiments show that MnCl2 is a promising safe and effective prophylactic countermeasure against ARS. MRI data support the systemic distribution of MnCl2 which is needed in order to protect multiple tissues in the body. The pathology data in bone marrow and the brain support faster recovery from radiation exposure in the treated animals and decreased organ damage.
-
Battlefield trauma necessitates prompt hemostatic intervention to mitigate fatalities resulting from critical blood loss. Insights from Operation Enduring Freedom and Operation Iraqi Freedom emphasize the limitations of conventional methods, such as tourniquets, especially in noncompressible torso hemorrhage. Despite advancements in hemostatic agents, the evolving dynamics of multidomain operations necessitate novel, lightweight strategies for hemorrhage control. This study investigates the Silicone-Based Polymer (SBP) Universal Combat Matrix (UCM) by SiOxMed, a multimodal matrix exhibiting efficacy in lethal hemorrhage models. The study evaluates UCM's multiday hemostatic capabilities in a noncompressible torso hemorrhage model, offering pivotal insights for potential deployment in battlefield trauma. ⋯ In conclusion, our investigation into the SBP UCM hemostatic efficacy in a grade IV liver laceration model demonstrates its rapid and reliable action in controlling bleeding, showcasing practicality with an average mass of 4.0 ± 1.0 g. Silicone-Based Polymer sustained hemostasis without adverse physiological effects, as evidenced by stable parameters and the survival of all swine during and after anesthesia. Macroscopic examination at 48 hours revealed durable adherence with no indications of hemorrhage. Histological evaluations highlighted SBP's role in stable clot formation, fibrinogenesis, and tissue regeneration, indicating its potential as a multimodal wound dressing. Although promising, the study has limitations, emphasizing the need for future research with larger samples and controls. This work sets the stage for exploring SBP's clinical implications, particularly in scenarios where lightweight, multimodal technologies are crucial for addressing traumatic injuries and enhancing military medical capabilities.