The Journal of experimental biology
-
In resting reptiles, the PO2 of pulmonary venous return (PLAO2; left atrial blood) may be 20 mmHg (1 mmHg = 0.1333 kPa) lower than the PO2 of gas in the lung. This level of PO2 is considerably higher than that observed in resting mammals and birds and results from ventilation-perfusion (V/Q) heterogeneity, pulmonary diffusion limitation and intrapulmonary shunting. However, the relative contribution of each of these factors is unknown. ⋯ M.) and PLAO2 increased significantly (P < 0.05) from 88 +/- 17 mmHg (low flow) to 120 +/- 14 mmHg (high flow). There was evidence of pulmonary diffusion limitation under all conditions, which was unchanged with increasing blood flow. These findings suggest that increased pulmonary blood flow during a ventilatory period results in both temporal and spatial matching of ventilation and perfusion, without altering pulmonary diffusion limitation.
-
Previous measurements of the mechanical properties of the heel pad, especially of the energy loss during a cycle of compressive loading and unloading, have given contrasting values according to whether the investigators used isolated single impacts (e.g. pendulum tests; energy loss approximately 48%) or continuous oscillations (energy loss approximately 30%). To investigate this discrepancy, rest periods were inserted between single compressive cycles, giving intermittent loading as in locomotion. The energy loss, measured as the percentage area of the hysteresis loop, was found to change linearly with the logarithm of the rest time. ⋯ The springy heel pad may help to reposition the foot during the transfer of load from the heel to the forefoot. Information is also included on the load-deformation curves for the heel pad and the way in which these change with rest time. This is presented as equations which may be useful in future models relating the mechanical properties of the heel to either its structure or its function.
-
Comparative Study
Comparison of the responses to hypoxia, ischaemia and ischaemic preconditioning in wild marmot and laboratory rabbit hearts.
Marmots (Marmota flaviventris) are burrowing mammals that may be subjected to low levels of oxygen and high levels of carbon dioxide in their underground environment. Since marmots successfully deal with this physiological challenge, we hypothesized that the isolated perfused marmot heart would be damaged less and recover better from a bout of induced hypoxia or ischaemia than would the heart of a comparison animal, the New Zealand laboratory rabbit (Oryctolagus cuniculus). Isolated marmot and rabbit hearts were made hypoxic by a 30 min perfusion with an oxygen-deficient buffer. ⋯ This was not true in the marmot hearts, however, as the preconditioning ischaemia did not promote a greater recovery over that in its absence. When preconditioned marmots hearts were compared with preconditioned rabbit hearts, there were no statistical differences in the responses. The hypothesis that marmot hearts would be damaged less and recover better from hypoxia and ischaemia was not supported by the experimental data.
-
The response of gill cell volume in Mytilus californianus and Mytilus trossolus (=edulis) to acute changes in salinity was assessed using three independent indicators: optical measurement of lateral cell height, measurement of intracellular water content using radiolabeled tracers and measurement of the contents of the major osmolytes of the gills. Optical measurements indicated significant variation in the response of individual lateral cells of M. californianus to acute low-salinity shock. Lateral cell height increased by approximately 20% shortly after abrupt exposure to 60% artificial sea water (ASW). ⋯ The changes in water space and solute content of gills from freshly collected M. californianus and M. trossolus were also consistent with the absence of volume regulation; cell water space remained elevated for at least 1 h after low-salinity exposure, and solute contents were unchanged after this period. We calculated the potential energetic cost of cell volume regulation for mussels exposed to 12 h of sinusoidal fluctuations between 100% and 50% sea water; solute uptake for full volume regulation in all tissues would cost a minimum of approximately 30% of the standard metabolic rate during the period of salinity increase. The routine absence of substantial cell volume regulation in Mytilus gill may reflect the potentially high energetic cost of volume regulation in the face of the large and frequent salinity fluctuations that are regularly encountered by estuarine bivalves.
-
Red cell oxygen affinity, red cell nucleoside triphosphate (NTP) levels and blood oxygen-carrying capacity were determined for male, nonpregnant and pregnant female, and fetal garter snakes Thamnophis elegans exposed to hypoxia (5 % oxygen) and hyperoxia (100 % oxygen). Male and nonpregnant female snakes were maintained under these conditions for up to 3 weeks and exhibited an apparent maximal change in oxygen affinity after 14 days of hypoxia and hyperoxia. Red cell NTP levels decreased and oxygen affinity increased with exposure to hypoxia, while exposure to hyperoxia promoted an increase in red cell NTP concentrations and a decrease in red cell oxygen affinity in the males. ⋯ The blood parameters of fetuses from females exposed to hypoxia or hyperoxia did not differ from those of normoxic control fetuses. The fetuses of females exposed to hypoxia suffered greater mortality, appeared less developed and had a lower average wet mass than the fetuses of normoxic- and hyperoxic-exposed females. Neither hypoxia nor hyperoxia altered the oxygen-carrying capacity of the blood in any group of snake.