The Journal of experimental biology
-
Comparative Study
Hypoxia progressively lowers thermal gaping thresholds in bearded dragons, Pogona vitticeps.
Most animals, including reptiles, lower body temperature (Tb) under hypoxic conditions. Numerous physiological and behavioural traits significant to the regulation of Tb are altered by hypoxia in ways that suggest an orchestrated adjustment of Tb at a new and lower regulated level. We examined this matter in bearded dragons, Pogona vitticeps, a species of reptile that naturally exhibits open mouth gaping at high temperatures, presumably in order to promote evaporation and thus prevent or avoid further increases in Tb. ⋯ Females consistently had lower gaping threshold temperatures than did males, and this difference was retained throughout exposure to hypoxia. In addition to gaping, evaporative water loss from the cloaca may also play a significant role in temperature regulation, since the ambient temperature at which cloacal discharge occurred was also reduced significantly in hypoxia. The results reported herein strongly support the view that hypoxia reduces temperature set-point in lizards and that such changes are coordinated by specific behavioural thermoeffectors that modulate evaporative water loss and thus facilitate a high potential for controlling or modifying Tb.
-
Cardiac preload (central venous pressure, P(CV), mean circulatory filling pressure (MCFP), dorsal aortic blood pressure (P(DA)) and relative cardiac output (Q) were measured in sea bass (Dicentrarchus labrax) at rest and while swimming at 1 and 2 BL s(-1). MCFP, an index of venous capacitance and the upstream venous pressure driving the return of venous blood to the heart, was measured as the plateau in Pcv during ventral aortic occlusion. Compared with resting values, swimming at 1 and 2 BL s(-1) increased Q (by 15+/-1.5 and 38+/-6.5%, respectively), P(CV) (from 0.11+/-0.01 kPa to 0.12+/-0.01 and 0.16+/-0.02 kPa, respectively), MCFP (from 0.27+/-0.02 kPa to 0.31+/-0.02 and 0.40+/-0.04 kPa, respectively) and the calculated pressure gradient for venous return (DeltaP(V), from 0.16+/-0.01 kPa to 0.18+/-0.02 and 0.24+/-0.02 kPa, respectively), but not P(DA). ⋯ Prazosin treatment (1 mg kg(-1) Mb) abolished pressure and flow changes during swimming at 1 BL s(-1), but not 2 BL s(-1), indicating that other control systems besides an alpha-adrenoceptor control are involved. This study is the first to address the control of venous capacitance in swimming fish. It questions the generality that increased Q during swimming is regulated primarily through Vs and shows that an increased cardiac filling pressure does not necessarily lead to an increased Vs in fish, but may instead compensate for a reduced cardiac filling time.
-
Comparative Study
Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition speed.
The mechanisms that govern the voluntary transition from walking to running as walking speed increases in human gait are not well understood. The objective of this study was to examine the hypothesis that plantar flexor muscle force production is greatly impaired at the preferred transition speed (PTS) due to intrinsic muscle properties and, thus, serves as a determinant for the walk-to-run transition. The plantar flexors have been shown to be important contributors to satisfying the mechanical energetic demands of walking and are the primary contributors to the observed ground reaction forces (GRFs) during the propulsion phase. ⋯ These decreases in force production were attributed to the intrinsic force-length-velocity properties of muscle. In addition, the running simulation analysis revealed that the plantar flexor forces nearly doubled for similar activation levels when the gait switched to a run at the PTS due to improved contractile conditions. These results suggest the plantar flexors may serve as an important determinant for the walk-to-run transition and highlight the important role intrinsic muscle properties play in determining the specific neuromotor strategies used in human locomotion.
-
Mechanical energy expenditure was investigated in children who are just learning to walk and compared with adult mechanical energy expenditure during walking. First, we determined whether the inverted pendulum (IP) mechanism of energy exchange was present in toddlers. It seems that new walkers partially make use of this energy saving mechanism, but it is less efficient than in adults. ⋯ Wext seems to be the major determinant for total mechanical energy expenditure. At intermediate froude numbers work production is comparable between adults and toddlers, but at low and high froude numbers Wtot increases due to the steep increases in Wext. Despite the fact that mechanical work requirements in toddler gait are underestimated if work during double contact is not taken into account, it is not a major determinant of the energy cost of walking.
-
Comparative Study
Ventilatory compensation of the alkaline tide during digestion in the snake Boa constrictor.
The increased metabolic rate during digestion is associated with changes in arterial acid-base parameters that are caused by gastric acid secretion (the 'alkaline tide'). Net transfer of HCl to the stomach lumen causes an increase in plasma HCO3- levels, but arterial pH does not change because of a ventilatory compensation that counters the metabolic alkalosis. It seems, therefore, that ventilation is controlled to preserve pH and not PCO2 during the postprandial period. ⋯ Omeprazole virtually abolished the changes in arterial pH and plasma HCO3- concentration during digestion and there was no increase in arterial PCO2. The increased arterial PCO2 during digestion is not caused, therefore, by the increased metabolism during digestion or a lower ventilatory responsiveness to ventilatory stimuli during a presumably relaxed state in digestion. Furthermore, the constant arterial PCO2, in the absence of an alkaline tide, of omeprazole-treated snakes strongly suggests that pH rather than PCO2 normally affects chemoreceptor activity and ventilatory drive.