The Journal of immunology : official journal of the American Association of Immunologists
-
Melioidosis is infection caused by the flagellated saprophyte Burkholderia pseudomallei. TLR5 is a pathogen recognition receptor activated by bacterial flagellin. We studied a genetic variant that encodes a defective TLR5 protein, TLR5(1174C)>T, to elucidate the role of TLR5 in melioidosis. ⋯ B. pseudomallei induced lower monocyte-normalized levels of IL-10 in carriers of TLR5(1174T). We conclude that the hypofunctional genetic variant TLR5(1174C)>T is associated with reduced organ failure and improved survival in melioidosis. This conclusion suggests a deleterious immunoregulatory effect of TLR5 that may be mediated by IL-10 and identifies this receptor as a potential therapeutic target in melioidosis.
-
IFN-β, IL-27, and IL-10 have been shown to exert a range of similar immunoregulatory effects in murine and human experimental systems, particularly in Th1- and Th17-mediated models of autoimmune inflammatory disease. In this study we sought to translate some of our previous findings in murine systems to human in vitro models and delineate the interdependence of these different cytokines in their immunoregulatory effects. We demonstrate that human IL-27 upregulates IL-10 in T cell-activated PBMC cultures and that IFN-β drives IL-27 production in activated monocytes. ⋯ However, IL-27 signaling is not required for the therapeutic effect of IFN-β in EAE. Suppression of Th17-biased EAE by IL-27 is IL-10-independent, in contrast to its mechanism of action in Th1-biased EAE. Taken together, these findings delineate a complex set of interdependent and independent immunoregulatory mechanisms of IFN-β, IL-27, and IL-10 in human experimental models and in murine Th1- and Th17-driven autoimmunity.
-
Pathogens are detected by innate immune receptors that, upon activation, orchestrate an appropriate immune response. Recent studies revealed the intracellular signaling cascades involved in the TLR-initiated immune response to Brucella abortus infection. However, no report has elucidated the role of inflammasome receptors in Brucella recognition. ⋯ This protective effect is due to the inflammatory response caused by IL-1β and IL-18 rather than pyroptosis, because we observed augmented bacterial burden in IL-1R and IL-18 knockout mice. Finally, we determined that bacterial type IV secretion system VirB and live, but not heat-killed, Brucella are required for full inflammasome activation in macrophages during infection. Taken together, our results indicate that Brucella is sensed by ASC inflammasomes that collectively orchestrate a robust caspase-1 activation and proinflammatory response.
-
Mechanical ventilation of lungs is capable of activating the innate immune system and inducing sterile inflammatory response. The proinflammatory cytokine IL-1β is among the definitive markers for accurately identifying ventilator-induced lung inflammation. However, mechanisms of IL-1β release during mechanical ventilation are unknown. ⋯ Further, mechanical ventilation activated the NLRP3 inflammasomes in mouse alveolar macrophages and increased the production of IL-1β in vivo. IL-1β neutralization significantly reduced mechanical ventilation-induced inflammatory lung injury. These findings suggest that the alveolar macrophage NLRP3 inflammasome may sense lung alveolar stretch to induce the release of IL-1β and hence may contribute to the mechanism of lung inflammatory injury during mechanical ventilation.
-
Experimental autoimmune prostatitis (EAP) is considered a valid model for the human disease chronic prostatitis/chronic pelvic pain syndrome. In this report, we analyzed phenotypic characteristics of T cells that gain access to the prostate and induce leukocyte recruitment in mice with different susceptibility to EAP. After EAP induction, NOD mice developed a specific cellular response characterized by a mixed Th1/Th17 pattern with specific T cells mainly expressing CXCR3 that infiltrated and damaged the prostate. ⋯ Additional experiments using adoptive transfer of sorted CXCR3(+)CD3(+) T cells or administrating a CXCR3 antagonist treatment confirmed these previous results. Altogether, our results demonstrate that the expression of CXCR3 on effector T cells is essential for their homing to the prostate gland in EAP. CXCR3 emerges as a potential therapeutic target to control chronic prostatitis/chronic pelvic pain syndrome.