The Journal of biological chemistry
-
Genetic and molecular studies suggest that activin receptor-like kinase 1 (ALK1), a transforming growth factor β (TGF-β) type I receptor, and endoglin, a TGF-β co-receptor, play an essential role in vascular development and pathological angiogenesis. Several agents that interfere with ALK1 and endoglin function are currently in clinical trials for antiangiogenic activity in cancer therapy. One of these agents, PF-03446962 (anti-hALK1 antibody), shows promising results in the clinic. ⋯ In addition, we demonstrated that anti-hALK1 antibody inhibited endothelial cell sprouting but did not directly interfere with vascular endothelial growth factor (VEGF) signaling, VEGF-induced proliferation, and migration of endothelial cells. Finally, we demonstrated that BMP9 in serum is essential for endothelial sprouting and that anti-hALK1 antibody inhibits this potently. Our data suggest that both the VEGF/VEGF receptor and the BMP9/ALK1 pathways are essential for stimulating angiogenesis, and targeting both pathways simultaneously may be an attractive strategy to overcome resistance to antiangiogenesis therapy.
-
In addition to many important roles for Cdk5 in brain development and synaptic function, we reported previously that Cdk5 regulates inflammatory pain signaling, partly through phosphorylation of transient receptor potential vanilloid 1 (TRPV1), an important Na(+)/Ca(2+) channel expressed in primary nociceptive afferent nerves. Because TGF-β regulates inflammatory processes and its receptor is expressed in TRPV1-positive afferents, we studied the cross-talk between these two pathways in sensory neurons during experimental peripheral inflammation. We demonstrate that TGF-β1 increases transcription and protein levels of the Cdk5 co-activator p35 through ERK1/2, resulting in an increase in Cdk5 activity in rat B104 neuroblastoma cells. ⋯ Importantly, Cdk5 activity was reduced in the trigeminal ganglia and DRG of 14-day-old TGF-β1 knock-out mice, resulting in reduced Cdk5-dependent phosphorylation of TRPV1. The decreased Cdk5 activity is associated with attenuated thermal hyperalgesia in TGF-β1 receptor conditional knock-out mice, where TGF-β signaling is significantly reduced in trigeminal ganglia and DRG. Collectively, our results indicate that active cross-talk between the TGF-β and Cdk5 pathways contributes to inflammatory pain signaling.
-
An imbalance of chloride and sodium ion transport in several epithelia is a feature of cystic fibrosis (CF), an inherited disease that is a consequence of mutations in the cftr gene. The cftr gene codes for a Cl(-) channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Some mutations in this gene cause the balance between Cl(-) secretion and Na(+) absorption to be disturbed in the airways; Cl(-) secretion is impaired, whereas Na(+) absorption is elevated. ⋯ However, when we evaluated the ΔF508-CFTR and ENaC association using fluorescence resonance energy transfer (FRET), FRET efficiencies were not significantly different from negative controls, suggesting that ΔF508-CFTR and ENaC are not in close proximity to each other under basal conditions. However, with partial correction of ΔF508-CFTR misprocessing by low temperature and chemical rescue, leading to surface expression as assessed by total internal reflection fluorescence (TIRF) microscopy, we observed a positive FRET signal. Our findings suggest that the ΔF508 mutation alters the close association of CFTR and ENaC.
-
The small-diameter (<25 μm) and large-diameter (>30 μm) sensory neurons of the dorsal root ganglion (DRG) express distinct combinations of tetrodotoxin sensitive and tetrodotoxin-resistant Na(+) channels that underlie the unique electrical properties of these neurons. In vivo, these Na(+) channels are formed as complexes of pore-forming α and auxiliary β subunits. The goal of this study was to investigate the expression of β subunits in DRG sensory neurons. ⋯ Co-immunoprecipitation and immunocytochemistry indicated that Na(v)1.7 formed stable complexes with the β(1)-β(3) subunits in vivo and that Na(v)1.7 and β(3) co-localized within the plasma membranes of small DRG neurons. Heterologous expression studies showed that β(3) induced a hyperpolarizing shift in Na(v)1.7 activation, whereas β(1) produced a depolarizing shift in inactivation and faster recovery. The data indicate that β(3) and β(1) subunits are preferentially expressed in small and large DRG neurons, respectively, and that these auxiliary subunits differentially regulate the gating properties of Na(v)1.7 channels.
-
Phagocytosis is a crucial event in the immune system that allows cells to engulf and eliminate pathogens. This is mediated through the action of immunoglobulin (IgG)-opsonized microbes acting on Fcγ receptors (FcγR) on macrophages, which results in sustained levels of intracellular Ca(2+) through the mobilization of Ca(2+) second messengers. It is known that the ADP-ribosyl cyclase is responsible for the rise in Ca(2+) levels after FcγR activation. ⋯ Ex vivo data with macrophages extracted from CD38(-/-) mice also shows a reduced Ca(2+) signaling and phagocytic index. Furthermore, a significantly reduced phagocytic index of Mycobacterium bovis BCG was shown in macrophages from CD38(-/-) mice in vivo. This study suggests a crucial role of CD38 in FcγR-mediated phagocytosis through its recruitment to the phagosome and mobilization of cADPR-induced intracellular Ca(2+) and store-operated extracellular Ca(2+) influx.