Journal of neurochemistry
-
Journal of neurochemistry · Jun 2012
Nerve injury increases brain-derived neurotrophic factor levels to suppress BK channel activity in primary sensory neurons.
Abnormal hyperexcitability of primary sensory neurons contributes to neuropathic pain development after nerve injury. Nerve injury profoundly reduces the expression of big conductance Ca(2+) -activated K(+) (BK) channels in the dorsal root ganglion (DRG). However, little is known about how nerve injury affects BK channel activity in DRG neurons. ⋯ BDNF treatment reduced the mRNA levels of BKα1 subunit in DRG neurons, and anti-BDNF antibody attenuated the reduction in the BKα1 mRNA level in injured DRG neurons. These findings suggest that nerve injury primarily diminishes the BK channel activity in small and medium DRG neurons. Increased BDNF levels contribute to reduced BK channel activity in DRG neurons through epigenetic and transcriptional mechanisms in neuropathic pain.
-
Journal of neurochemistry · Jun 2012
Valproic acid attenuates blood-spinal cord barrier disruption by inhibiting matrix metalloprotease-9 activity and improves functional recovery after spinal cord injury.
The disruption of blood-spinal cord barrier (BSCB) after spinal cord injury (SCI) elicits an intensive local inflammation by the infiltration of blood cells such as neutrophils and macrophages, leading to cell death and permanent neurological disability. SCI activates matrix metalloprotease-9 (MMP-9), which is known to induce BSCB disruption. Here, we examined whether valproic acid (VPA), a histone deacetylase inhibitor, would attenuate BSCB disruption by inhibiting MMP-9 activity, leading to improvement of functional outcome after SCI. ⋯ Furthermore, VPA increased the levels of acetylated histone 3, pAkt, and heat-shock protein 27 and 70, which have anti-apoptotic functions after SCI. Finally, VPA inhibited apoptotic cell death and caspase 3 activation, reduced the lesion volume and improved functional recovery after injury. Thus, our results demonstrated that VPA improves functional recovery by attenuating BSCB disruption via inhibition of MMP-9 activity after SCI.
-
Journal of neurochemistry · May 2012
Phosphorylated CaMKII post-synaptic binding to NR2B subunits in the anterior cingulate cortex mediates visceral pain in visceral hypersensitive rats.
The NR2B subunit of NMDA receptor in the anterior cingulate cortex (ACC) is up-regulated in viscerally hypersensitive (VH) rats induced by colonic anaphylaxis. It plays a critical role in modulation of ACC sensitization and visceral pain responses. Given the key role of calcium/calmodulin-dependent protein kinase II (CaMKII) in synaptic plasticity and behavior learning and memory, we hypothesize that phosphorylation of CaMKII binding to NR2B mediates visceral pain in VH states. ⋯ Western blotting following co-immunoprecipitation showed that P-CaMKII-Thr²⁸⁶ bound to NR2B in the PSD, which was increased to 267% of control in VH rats. Administration of CaMKII antagonist Antennapedia-CaMKIINtide suppressed visceromotor response in VH rats in parallel with decrease of NR2B levels and reduction of the NR2B-P-CaMKII-Thr²⁸⁶ protein complex in PSD. In conclusion, CaMKII is a critical signaling molecule in the ACC glutamatergic synaptic transmission and phosphorylation of CaMKII at Thr286, which binds to NR2B subunit at post-synaptic site, modulates visceral pain in viscerally hypersensitive state.
-
Journal of neurochemistry · Apr 2012
Comparative StudyAttenuation of neonatal ischemic brain damage using a 20-HETE synthesis inhibitor.
20-Hydroxyeicosatetraenoic acid (20-HETE) is a cytochrome P450 metabolite of arachidonic acid that that contributes to infarct size following focal cerebral ischemia. However, little is known about the role of 20-HETE in global cerebral ischemia or neonatal hypoxia-ischemia (H-I). The present study examined the effects of blockade of the synthesis of 20-HETE with N-hydroxy-N'-(4-n-butyl-2-methylphenyl) formamidine (HET0016) in neonatal piglets after H-I to determine if it protects highly vulnerable striatal neurons. ⋯ HET0016 selectively inhibited the H-I induced phosphorylation at these same sites at 3 h of recovery and improved Na(+), K(+) -ATPase activity. At 3 h, HET0016 also suppressed H-I induced extracellular signal-regulated kinase 1/2 activation and protein markers of nitrosative and oxidative stress. Thus, 20-HETE can exert direct effects on key proteins involved in neuronal excitotoxicity in vivo and contributes to neurodegeneration after global cerebral ischemia in immature brain.
-
Journal of neurochemistry · Mar 2012
Activation of transient receptor potential ankyrin 1 evokes nociception through substance P release from primary sensory neurons.
To examine mechanisms underlying substance P (SP) release from primary sensory neurons in response to activation of the non-selective cation channel transient receptor potential ankyrin 1 (TRPA1), SP release from cultured rat dorsal root ganglion neurons was measured, using radioimmunoassay, by stimulating TRPA1 with allyl isothiocyanate (AITC), a TRPA1 agonist. AITC-evoked SP release occurred in a concentration- and time-dependent manner. Interestingly, p38 mitogen-activated protein kinase (p38) inhibitor SB203580 significantly attenuated AITC-evoked SP release. ⋯ Immunohistochemical studies demonstrated that intraplantar AITC injection induced the phosphorylation of p38 in mouse dorsal root ganglion neurons containing SP. These findings suggest that activation of TRPA1 evokes SP release from the primary sensory neurons through phosphorylation of p38, subsequent nociceptive behaviors and inflammatory responses. Furthermore, the data also indicate that blocking the effects of TRPA1 activation at the periphery leads to significant antinociception.