Lancet
-
Cystic fibrosis is the most common autosomal recessive disorder in white people, with a frequency of about 1 in 2500 livebirths. Discovery of the mutated gene encoding a defective chloride channel in epithelial cells--named cystic fibrosis transmembrane conductance regulator (CFTR)--has improved our understanding of the disorder's pathophysiology and has aided diagnosis, but has shown the disease's complexity. ⋯ Life expectancy of patients with the disorder has been greatly increased over past decades because of better notions of symptomatic treatment strategies. Here, we summarise advances in understanding and treatment of cystic fibrosis, focusing on pulmonary disease, which accounts for most morbidity and deaths.
-
The mechanisms responsible for disturbed iron homoeostasis in hereditary haemochromatosis are poorly understood. However, results of some studies indicate a link between hepcidin, a liver-derived peptide, and intestinal iron absorption, suggesting that this molecule could play a part in hepatic iron overload. To investigate this possible association, we studied the hepatic expression of the gene for hepcidin (HAMP) and a gene important in iron transport (IREG1) in patients with haemochromatosis, in normal controls, and in Hfe-knockout mice. ⋯ Lack of HAMP upregulation in HFE-associated haemochromatosis despite significant hepatic iron loading indicates that HFE plays an important part in the regulation of hepcidin expression in response to iron overload. Our results imply that the liver is important in the pathophysiology of HFE-associated haemochromatosis. Furthermore, the increase in hepatic IREG1 expression in haemochromatosis suggests that IREG1 could function to facilitate the removal of excess iron from the liver.