Lancet
-
Past nuclear disasters, such as the atomic bombings in 1945 and major accidents at nuclear power plants, have highlighted similarities in potential public health effects of radiation in both circumstances, including health issues unrelated to radiation exposure. Although the rarity of nuclear disasters limits opportunities to undertake rigorous research of evidence-based interventions and strategies, identification of lessons learned and development of an effective plan to protect the public, minimise negative effects, and protect emergency workers from exposure to high-dose radiation is important. Additionally, research is needed to help decision makers to avoid premature deaths among patients already in hospitals and other vulnerable groups during evacuation. ⋯ To overcome difficulties of risk communication and provide decision aids to protect workers, vulnerable people, and residents after a nuclear disaster, physicians should receive training in nuclear disaster response. This training should include evidence-based interventions, support decisions to balance potential harms and benefits, and take account of scientific uncertainty in provision of community health care. An open and joint learning process is essential to prepare for, and minimise the effects of, future nuclear disasters.
-
Late-onset effects of exposure to ionising radiation on the human body have been identified by long-term, large-scale epidemiological studies. The cohort study of Japanese survivors of the atomic bombings of Hiroshima and Nagasaki (the Life Span Study) is thought to be the most reliable source of information about these health effects because of the size of the cohort, the exposure of a general population of both sexes and all ages, and the wide range of individually assessed doses. For this reason, the Life Span Study has become fundamental to risk assessment in the radiation protection system of the International Commission on Radiological Protection and other authorities. ⋯ The dose-response relation for cancer at low doses is assumed, for purposes of radiological protection, to be linear without a threshold, but has not been shown definitively. This outstanding issue is not only a problem when dealing appropriately with potential health effects of nuclear accidents, such as at Fukushima and Chernobyl, but is of growing concern in occupational and medical exposure. Therefore, the appropriate dose-response relation for effects of low doses of radiation needs to be established.