British journal of pharmacology
-
Propofol is a widely used intravenous anaesthetic agent, but has undesirable cardiac side effects, including bradyarrhythmia and its severe form asystole. This study examined the ionic and cellular mechanisms underlying propofol-induced bradycardia. ⋯ Micromolar concentrations of propofol suppressed the slow diastolic depolarization and firing rate of sinoatrial node action potentials by impairing If activation and reducing ICa,T , ICa,L and IKs . These observations suggest that the direct inhibitory effect of propofol on sinoatrial node automaticity, mediated via multiple channel inhibition, underlies the propofol-induced bradycardia observed in clinical settings.
-
Spinal voltage-gated calcium channels (VGCCs) are pivotal regulators of painful and inflammatory alterations, representing attractive therapeutic targets. We examined the effects of epidural administration of the P/Q- and N-type VGCC blockers Tx3-3 and Phα1β, respectively, isolated from the spider Phoneutria nigriventer, on symptomatic, inflammatory and functional changes allied to mouse cyclophosphamide (CPA)-induced haemorrhagic cystitis (HC). The effects of P. nigriventer-derived toxins were compared with those displayed by MVIIC and MVIIA, extracted from the cone snail Conus magus. ⋯ Our results shed new light on the role of spinal P/Q and N-type VGCC in bladder dysfunctions, pointing out Phα1β as a promising alternative for treating complications associated with CPA-induced HC.
-
Several studies suggest that heteromerization between μ (MOP) and δ (DOP) opioid receptors modulates the signalling properties of the individual receptors. For example, whereas activation of MOP receptors by an agonist induces G protein-mediated signalling, the same agonist induces β-arrestin-mediated signalling in the context of the MOP-DOP receptor heteromer. Moreover, heteromer-mediated signalling is allosterically modulated by a combination of MOP and DOP receptor ligands. This has implications in analgesia given that morphine-induced antinociception can be potentiated by DOP receptor ligands. Recently reagents selectively targeting the MOP-DOP receptor heteromer such as bivalent ligands, antibodies or membrane permeable peptides have been generated; these reagents are enabling studies to elucidate the contribution of endogenously expressed heteromers to analgesia as well as to the development of side-effects associated with chronic opioid use. Recent advances in drug screening technology have led to the identification of a MOP-DOP receptor heteromer-biased agonist that activates both G protein-mediated and β-arrestin-mediated signalling. Moreover, this heteromer-biased agonist exhibits potent antinociceptive activity but with reduced side-effects, suggesting that ligands targeting the MOP-DOP receptor heteromer form a basis for the development of novel therapeutics for the treatment of pain. In this review, we summarize findings regarding the biological and functional characteristics of the MOP-DOP receptor heteromer and the in vitro and in vivo properties of heteromer-selective ligands. ⋯ This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
-
The opioid receptor family comprises four structurally homologous but functionally distinct sub-groups, the μ (MOP), δ (DOP), κ (KOP) and nociceptin (NOP) receptors. As most opioid agonists are selective but not specific, a broad spectrum of behaviours due to activation of different opioid receptors is expected. In this study, we examine whether other opioid receptor systems influenced KOP-mediated antinociception. ⋯ This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
-
Addiction is a devastating disorder that affects 15.3 million people worldwide. While prevalent, few effective treatments exist. Orexin receptors have been proposed as a potential target for anti-craving medications. Orexins, also known as hypocretins, are neuropeptides produced in neurons of the lateral and dorsomedial hypothalamus and perifornical area, which project widely throughout the brain. The absence of orexins in rodents and humans leads to narcolepsy. However, orexins also have an established role in reward seeking. This review will discuss some of the original studies describing the roles of the orexins in reward seeking as well as specific works that were presented at the 2013 International Narcotics Research Conference. Orexin signalling can promote drug-induced plasticity of glutamatergic synapses onto dopamine neurons of the ventral tegmental area (VTA), a brain region implicated in motivated behaviour. Additional evidence suggests that orexin signalling can also promote drug seeking by initiating an endocannabinoid-mediated synaptic depression of GABAergic inputs to the VTA, and thereby disinhibiting dopaminergic neurons. Orexin neurons co-express the inhibitory opioid peptide dynorphin. It has been proposed that orexin in the VTA may not mediate reward per se, but rather occludes the 'anti-reward' effects of dynorphin. Finally, orexin signalling in the prefrontal cortex and the central amygdala is implicated in reinstatement of reward seeking. This review will highlight recent work describing the role of orexin signalling in cellular processes underlying addiction-related behaviours and propose novel hypotheses for the mechanisms by which orexin signalling may impart drug seeking. ⋯ This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.