British journal of pharmacology
-
Review Comparative Study
Comparison and analysis of the animal models used to study the effect of morphine on tumour growth and metastasis.
The effect of opioids on tumour growth and metastasis has been debated for many years, with recent emphasis on the possibility that they might influence the rate of disease-free survival after tumour resection when used in the perioperative pain management of cancer surgery patients. The literature presents conflicting and inconclusive in vitro and in vivo data about the potential effect of opioids, especially morphine, on tumour growth and metastasis. To inform clinical practice, appropriate animal models are needed to test whether opioids alter the course of tumour growth and metastasis. Here, we review the literature on animal-based studies testing the effect of morphine on cancer so far, and analyse differences between the models used that may explain the discrepancies in published results. Such analysis should elucidate the role of opioids in cancer and help define ideal pre-clinical models to provide definitive answers. ⋯ This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
-
Opiate analgesics such as morphine are often used for pain therapy. However, antinociceptive tolerance and dependence may develop with long-term use of these drugs. It was found that μ-opioid receptors can interact with δ-opioid receptors, and morphine antinociceptive tolerance can be reduced by blocking δ-opioid receptors. Recent studies have shown that μ- and δ-opioid receptors are co-expressed in a considerable number of small neurons in the dorsal root ganglion. The interaction of μ-opioid receptors with δ-opioid receptors in the nociceptive afferents is facilitated by the stimulus-induced cell-surface expression of δ-opioid receptors, and contributes to morphine tolerance. Further analysis of the molecular, cellular and neural circuit mechanisms that regulate the trafficking and interaction of opioid receptors and related signalling molecules in the pain pathway would help to elucidate the mechanism of opiate analgesia and improve pain therapy. ⋯ This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
-
Two peptide agonists of the glucagon-like peptide-1 (GLP-1) receptor, exenatide and GLP-1 itself, exert anti-hypersensitive effects in neuropathic, cancer and diabetic pain. In this study, we have assessed the anti-allodynic and anti-hyperalgesic effects of the non-peptide agonist WB4-24 in inflammatory nociception and the possible involvement of microglial β-endorphin and pro-inflammatory cytokines. ⋯ Our results suggest that WB4-24 inhibits inflammatory nociception by releasing analgesic β-endorphin rather than inhibiting the expression of proalgesic pro-inflammatory cytokines in spinal microglia, and that the spinal GLP-1 receptor is a potential target molecule for the treatment of pain hypersensitivity including inflammatory nociception.
-
The δ opioid receptor (DOP receptor) undergoes internalization both constitutively and in response to agonists. Previous work has shown that DOP receptors traffic from intracellular compartments to neuronal cell membranes following prolonged morphine treatment. Here, we examined the effects of prolonged morphine treatment on the post-internalization trafficking of DOP receptors. ⋯ This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
-
Cannabinoids and opioids produce antinociception by modulating GABAergic synaptic transmission in a descending analgesic pathway from the midbrain periaqueductal grey (PAG). While chronic opioid treatment produces opioid tolerance, it has recently been shown to enhance cannabinoid-induced antinociception within the PAG. This study examined the effect of repeated opioid treatment on opioid and cannabinoid presynaptic modulation of GABAergic synaptic transmission in PAG. ⋯ This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.