Journal of clinical microbiology
-
J. Clin. Microbiol. · Jul 2020
Open Development and Clinical Validation of Multiple 3D-Printed Nasopharyngeal Collection Swabs: Rapid Resolution of a Critical COVID-19 Testing Bottleneck.
The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a severe international shortage of the nasopharyngeal swabs that are required for collection of optimal specimens, creating a critical bottleneck blocking clinical laboratories' ability to perform high-sensitivity virological testing for SARS-CoV-2. To address this crisis, we designed and executed an innovative, cooperative, rapid-response translational-research program that brought together health care workers, manufacturers, and scientists to emergently develop and clinically validate new swabs for immediate mass production by 3D printing. We performed a multistep preclinical evaluation of 160 swab designs and 48 materials from 24 companies, laboratories, and individuals, and we shared results and other feedback via a public data repository (http://github.com/rarnaout/Covidswab/). ⋯ Study staff preferred one of the prototypes over the others and preferred the control swab overall. The total time elapsed between identification of the problem and validation of the first prototype was 22 days. Contact information for ordering can be found at http://printedswabs.org Our experience holds lessons for the rapid development, validation, and deployment of new technology for this pandemic and beyond.
-
Testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) got off to a slow start in the United States. In this commentary, I describe my experience with CoV disease 2019 (COVID-19), with a focus on being tested at the University of North Carolina-Chapel Hill Respiratory Diagnostic Center on its inaugural day.
-
J. Clin. Microbiol. · Jul 2020
Evaluation of the QIAstat-Dx Respiratory SARS-CoV-2 Panel, the First Rapid Multiplex PCR Commercial Assay for SARS-CoV-2 Detection.
In the race to contain severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), efficient detection and triage of infected patients must rely on rapid and reliable testing. In this work, we performed the first evaluation of the QIAstat-Dx respiratory SARS-CoV-2 panel (QIAstat-SARS) for SARS-CoV-2 detection. This assay is the first rapid multiplex PCR (mPCR) assay, including SARS-CoV-2 detection, and is fully compatible with a non-PCR-trained laboratory or point-of-care (PoC) testing. ⋯ No cross-reaction was encountered for any other respiratory viruses or bacteria included in the panel. The QIAstat-SARS rapid multiplex PCR panel provides a highly sensitive, robust, and accurate assay for rapid detection of SARS-CoV-2. This assay allows rapid decisions even in non-PCR-trained laboratory or point-of-care testing, allowing innovative organization.
-
J. Clin. Microbiol. · Jul 2020
Comparative StudyPerformance Characteristics of Four High-Throughput Immunoassays for Detection of IgG Antibodies against SARS-CoV-2.
The role of serologic testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in both the clinical and public health settings, will continue to evolve as we gain increasing insight into our immune response to the virus. Here, we evaluated four high-throughput serologic tests for detection of anti-SARS-CoV-2 IgG antibodies, from Abbott Laboratories (Abbott Park, IL), Epitope Diagnostics, Inc. (San Diego, CA), Euroimmun (Lubeck, Germany), and Ortho-Clinical Diagnostics (Rochester, NY), using a panel of serially collected serum samples (n = 224) from 56 patients with confirmed coronavirus disease 2019 (COVID-19), healthy donor sera from 2018, and a cross-reactivity serum panel collected in early 2020. The sensitivities of the Abbott, Epitope, Euroimmun, and Ortho-Clinical IgG assays in convalescent-phase serum samples collected more than 14 days post-symptom onset or post-initial positive reverse transcriptase PCR (RT-PCR) result were 92.9% (78/84), 88.1% (74/84), 97.6% (82/84), and 98.8% (83/84), respectively. ⋯ Overall assay specificity/positive predictive values based on a 5% prevalence rate were 99.6%/92.8%, 99.6%/90.6%, 98.0%/71.2%, and 99.6%/92.5%, respectively, for the Abbott, Epitope, Euroimmun, and Ortho-Clinical IgG assays. In conclusion, we show high sensitivity in convalescent-phase sera and high specificity for the Abbott, Euroimmun, and Ortho-Clinical anti-SARS-CoV-2 IgG assays. With the unprecedented influx of commercially available serologic tests for detection of antibodies against SARS-CoV-2, it remains imperative that laboratories thoroughly evaluate such assays for accuracy prior to implementation.