Proceedings of the National Academy of Sciences of the United States of America
-
Proc. Natl. Acad. Sci. U.S.A. · Aug 2013
Macrophage migration inhibitory factor (MIF) is a critical mediator of the innate immune response to Mycobacterium tuberculosis.
Macrophage migration inhibitory factor (MIF), an innate cytokine encoded in a functionally polymorphic genetic locus, contributes to detrimental inflammation but may be crucial for controlling infection. We explored the role of variant MIF alleles in tuberculosis. In a Ugandan cohort, genetic low expressers of MIF were 2.4-times more frequently identified among patients with Mycobacterium tuberculosis (TB) bacteremia than those without. ⋯ MIF-deficient macrophages demonstrated decreased cytokine and reactive oxygen production and impaired mycobacterial killing. Transcriptional investigation of MIF-deficient macrophages revealed reduced expression of the pattern recognition receptor dectin-1; restoration of dectin-1 expression recovered innate cytokine production and mycobacterial killing. Our data place MIF in a crucial upstream position in the innate immune response to mycobacteria and suggest that commonly occurring low expression MIF alleles confer an increased risk of TB disease in some populations.
-
Proc. Natl. Acad. Sci. U.S.A. · Jul 2013
Voltage sensor interaction site for selective small molecule inhibitors of voltage-gated sodium channels.
Voltage-gated sodium (Nav) channels play a fundamental role in the generation and propagation of electrical impulses in excitable cells. Here we describe two unique structurally related nanomolar potent small molecule Nav channel inhibitors that exhibit up to 1,000-fold selectivity for human Nav1.3/Nav1.1 (ICA-121431, IC50, 19 nM) or Nav1.7 (PF-04856264, IC50, 28 nM) vs. other TTX-sensitive or resistant (i.e., Nav1.5) sodium channels. Using both chimeras and single point mutations, we demonstrate that this unique class of sodium channel inhibitor interacts with the S1-S4 voltage sensor segment of homologous Domain 4. ⋯ The unique interaction region on the Domain 4 voltage sensor segment is distinct from the structural domains forming the channel pore, as well as previously characterized interaction sites for other small molecule inhibitors, including local anesthetics and TTX. However, this interaction region does include at least one amino acid residue [E1559 (Nav1.3)/D1586 (Nav1.7)] that is important for Site 3 α-scorpion and anemone polypeptide toxin modulators of Nav channel inactivation. The present study provides a potential framework for identifying subtype selective small molecule sodium channel inhibitors targeting interaction sites away from the pore region.
-
Proc. Natl. Acad. Sci. U.S.A. · Jul 2013
Axon position within the corpus callosum determines contralateral cortical projection.
How developing axons in the corpus callosum (CC) achieve their homotopic projection to the contralateral cortex remains unclear. We found that axonal position within the CC plays a critical role in this projection. ⋯ However, the order in which axons were positioned within the CC still determined their contralateral projection, causing a severe disruption of the homotopic contralateral projection that persisted at postnatal day 30, when the normal developmental refinement of contralateral projections is completed in wild-type (WT) mice. Thus, the orderly positioning of axons within the CC is a primary determinant of how homotopic interhemispheric projections form in the contralateral cortex.
-
Proc. Natl. Acad. Sci. U.S.A. · Jul 2013
Fractalkine mediates inflammatory pain through activation of satellite glial cells.
The activation of the satellite glial cells (SGCs) surrounding the dorsal root ganglion (DRG) neurons appears to play a role in pathological pain. We tested the hypothesis that fractalkine, which is constitutively expressed by primary nociceptive neurons, is the link between peripheral inflammation and the activation of SGCs and is thus responsible for the genesis of the inflammatory pain. The injection of carrageenin into the rat hind paw induced a decrease in the mechanical nociceptive threshold (hypernociception), which was associated with an increase in mRNA and GFAP protein expression in the DRG. ⋯ Overall, these results suggest that, during peripheral inflammation, fractalkine is released in the DRG and contributes to the genesis of inflammatory hypernociception. Fractalkine's effect appears to be dependent on the activation of the SGCs, leading to the production of TNFα, IL-1β, and prostanoids, which are likely responsible for the maintenance of inflammatory pain. Thus, these results indicate that the inhibition of fractalkine/CX3CR1 signaling in SGCs may serve as a target to control inflammatory pain.
-
Proc. Natl. Acad. Sci. U.S.A. · Jun 2013
Regulatory interplay of Cockayne syndrome B ATPase and stress-response gene ATF3 following genotoxic stress.
Cockayne syndrome type B ATPase (CSB) belongs to the SwItch/Sucrose nonfermentable family. Its mutations are linked to Cockayne syndrome phenotypes and classically are thought to be caused by defects in transcription-coupled repair, a subtype of DNA repair. Here we show that after UV-C irradiation, immediate early genes such as activating transcription factor 3 (ATF3) are overexpressed. ⋯ In CSB-deficient cells ATF3 remains bound to the promoter, thereby preventing the arrival of polymerase II and the restart of transcription. Silencing of ATF3, as well as stable introduction of wild-type CSB, restores RNA synthesis in UV-irradiated CSB cells, suggesting that, in addition to its role in DNA repair, CSB activity likely is involved in the reversal of inhibitory properties on a gene-promoter region. We present strong experimental data supporting our view that the transcriptional defects observed in UV-irradiated CSB cells are largely the result of a permanent transcriptional repression of a certain set of genes in addition to some defect in DNA repair.