Journal of neurosurgery
-
Journal of neurosurgery · Dec 2000
Comparative StudyExperimental evaluation of the Spiegelberg intracranial pressure and intracranial compliance monitor. Technical note.
The goal of this study was to compare the Spiegelberg intraventricular intracranial pressure (ICP)/intracranial compliance monitoring device, which features an air-pouch balloon catheter, with existing gold-standard methods of measuring ICP and intracranial compliance. A Spiegelberg intraventricular catheter, a standard intraventricular catheter, and a Codman intraparenchymal ICP microsensor were placed in five sheep, which previously had been given anesthetic and paralytic agents, to allow comparative measurement of ICP at incremental levels (range 5-50 mm Hg). Intracranial pressure measured using the Spiegelberg intraventricular air-pouch balloon catheter displayed a linear correlation with ICP measured using the standard intraventricular fluid-filled catheter (r2 = 0.9846, p < 0.001; average bias -0.74 mm Hg), as well as with ICP measured using the Codman intraparenchymal strain-gauge sensor (r2 = 0.9778, p < 0.001; average bias 0.01 mm Hg). ⋯ The Spiegelberg air-pouch ICP/compliance monitor provides ICP and compliance data that are very similar to those obtained using both gold-standard methods and an intraparenchymal ICP monitor over a range of pathophysiological ICPs. The automated closed Spiegelberg system offers practical advantages for the measurement of intraventricular compliance. Assessment of the clinical utility and robustness of the Spiegelberg system, together with the development of an intraparenchymal device, would enhance the clinical utility of automated compliance measurement and expand the range of its applications.
-
Journal of neurosurgery · Dec 2000
Gamma knife radiosurgery as a single treatment modality for large cerebral arteriovenous malformations.
A consecutive series of 240 patients with arteriovenous malformations (AVMs) treated by gamma knife radiosurgery (GKS) between March 1993 and March 1999 was evaluated to assess the efficacy and safety of radiosurgery for cerebral AVMs larger than 10 cm3 in volume. ⋯ Recent improvement of radiosurgery in conjunction with stereotactic MR targeting and multiplanar dose planning has permitted the treatment of larger AVMs. It is suggested that gamma knife radiosurgery is effective for treating AVMs as large as 30 cm3 in volume with an acceptable risk.
-
Journal of neurosurgery · Dec 2000
Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients.
It has been established that 5-aminolevulinic acid (5-ALA) induces the accumulation of fluorescent porphyrins in glioblastoma multiforme (GBM), a phenomenon potentially exploitable to guide tumor resection. In this study the authors analyze the influence of fluorescence-guided resection on postoperative magnetic resonance (MR) imaging and survival in a series of patients who underwent surgery in the authors' department. ⋯ The observations in this study indicate the usefulness of 5-ALA-induced tumor fluorescence for guiding tumor resection. The completeness of resection, as determined intraoperatively from residual tissue fluorescence, was related to postoperative MR imaging findings and to survival in patients suffering from GBM.
-
Journal of neurosurgery · Dec 2000
Analysis of the causes of treatment failure in gamma knife radiosurgery for intracranial arteriovenous malformations.
The authors sought to analyze causes for treatment failure following gamma knife radiosurgery (GKS) for intracranial arteriovenous malformations (AVMs), in cases in which the nidus could still be observed on angiography 3 years postsurgery. ⋯ The causes of failed GKS for treatment of AVMs seen on 3-year follow-up angiograms include inadequate nidus definition, large nidus volume, suboptimal radiation dose, recanalization/reexpansion, and radioresistance associated with an intranidal fistula.
-
Journal of neurosurgery · Dec 2000
Case ReportsCerebral circulation and metabolism in the acute stage of subarachnoid hemorrhage.
The mechanism of reduction of cerebral circulation and metabolism in patients in the acute stage of aneurysmal subarachnoid hemorrhage (SAH) has not yet been fully clarified. The goal of this study was to elucidate this mechanism further. ⋯ The initial reduction in CBF due to elevated ICP, followed by reduction in CMRO, at the time of aneurysm rupture may play a role in the disturbance of CBF and cerebral metabolism in the acute stage of aneurysmal SAH.