Journal of neurosurgery
-
Journal of neurosurgery · May 2015
Increases in microvascular perfusion and tissue oxygenation via pulsed electromagnetic fields in the healthy rat brain.
High-frequency pulsed electromagnetic field stimulation is an emerging noninvasive therapy being used clinically to facilitate bone and cutaneous wound healing. Although the mechanisms of action of pulsed electromagnetic fields (PEMF) are unknown, some studies suggest that its effects are mediated by increased nitric oxide (NO), a well-known vasodilator. The authors hypothesized that in the brain, PEMF increase NO, which induces vasodilation, enhances microvascular perfusion and tissue oxygenation, and may be a useful adjunct therapy in stroke and traumatic brain injury. To test this hypothesis, they studied the effect of PEMF on a healthy rat brain with and without NO synthase (NOS) inhibition. ⋯ This is the first demonstration of the acute effects of PEMF on cerebral cortical microvascular perfusion and metabolism. Thirty minutes of PEMF treatment induced cerebral arteriolar dilation leading to an increase in microvascular blood flow and tissue oxygenation that persisted for at least 3 hours. The effects of PEMF were mediated by NO, as we have shown in NOS inhibition experiments. These results suggest that PEMF may be an effective treatment for patients after traumatic or ischemic brain injury. Studies on the effect of PEMF on the injured brain are in progress.