Journal of neurosurgery
-
Journal of neurosurgery · Dec 2016
Clipping of previously coiled cerebral aneurysms: efficacy, safety, and predictors in a cohort of 111 patients.
OBJECTIVE With the increasing number of aneurysms treated with endovascular coiling, more recurrences are being encountered. The aim of this study was to evaluate the efficacy and safety of microsurgical clipping in the treatment of recurrent, previously coiled cerebral aneurysms and to identify risk factors that can affect the outcomes of this procedure. METHODS One hundred eleven patients with recurrent aneurysms whose lesions were managed by surgical clipping between January 2002 and October 2014 were identified. ⋯ An aneurysm size > 7 mm was a significant predictor of incomplete obliteration and retreatment (p = 0.018). CONCLUSIONS Surgical clipping is safe and effective in treating recurrent, previously coiled cerebral aneurysms. Aneurysm size, location, and number of previous coiling procedures are important factors to consider in the management of these aneurysms.
-
Journal of neurosurgery · Dec 2016
Cost-effectiveness of stereotactic radiosurgery versus whole-brain radiation therapy for up to 10 brain metastases.
OBJECTIVE The JLGK0901 study found that stereotactic radiosurgery (SRS) is a safe and effective treatment option for treating up to 10 brain metastases. The purpose of this study is to determine the cost-effectiveness of treating up to 10 brain metastases with SRS, whole-brain radiation therapy (WBRT), or SRS and immediate WBRT (SRS+WBRT). METHODS A Markov model was developed to evaluate the cost effectiveness of SRS, WBRT, and SRS+WBRT in patients with 1 or 2-10 brain metastases. ⋯ SRS versus WBRT was also cost effective at a WTP of $200,000 per QALY on the probabilistic sensitivity analysis. CONCLUSIONS The most cost-effective strategy for patients with up to 10 brain metastases is SRS alone relative to SRS+WBRT. SRS alone may also be cost-effective relative to WBRT alone, but this depends on WTP, the cost of SRS, and patient preferences.
-
Journal of neurosurgery · Dec 2016
The role of diffusion tensor imaging tractography for Gamma Knife thalamotomy planning.
OBJECTIVE The role of tractography in Gamma Knife thalamotomy (GK-T) planning is still unclear. Pyramidal tractography might reduce the risk of radiation injury to the pyramidal tract and reduce motor complications. METHODS In this study, the ventralis intermedius nucleus (VIM) targets of 20 patients were bilaterally defined using Iplannet Stereotaxy Software, according to the anterior commissure-posterior commissure (AC-PC) line and considering the localization of the pyramidal tract. ⋯ They allow for a more objective definition of dose constraints to the IC and targeting. DTI pyramidal tractography introduced into the treatment planning may reduce the incidence of motor complications and improve efficacy. This needs to be validated in a large clinical series.
-
Journal of neurosurgery · Dec 2016
Three-dimensional assessment of the effects of high-density embolization material on the absorbed dose in the target for Gamma Knife radiosurgery of arteriovenous malformations.
OBJECTIVE Arteriovenous malformation (AVM) is an intracranial vascular disorder. Gamma Knife radiosurgery (GKRS) is used in conjunction with intraarterial embolization to eradicate the nidus of AVMs. Clinical results indicate that patients with prior embolization tend to gain less benefit from GKRS. ⋯ There were small areas where a large dose difference was observed on the isodose line plots, and those differences were mostly at or in the vicinity of the embolization materials. CONCLUSIONS The results of both the phantom and patient studies showed a dose reduction no larger than 5% due to the embolization material placed near the target. Although the comparison of 3D dose distributions indicated small local effects of the embolic material, the clinical impact on the obliteration rate is expected to be small.
-
Journal of neurosurgery · Dec 2016
Infraorbital nerve: a surgically relevant landmark for the pterygopalatine fossa, cavernous sinus, and anterolateral skull base in endoscopic transmaxillary approaches.
OBJECTIVE Endoscopic transmaxillary approaches (ETMAs) address pathology of the anterolateral skull base, including the cavernous sinus, pterygopalatine fossa, and infratemporal fossa. This anatomically complex region contains branches of the trigeminal nerve and external carotid artery and is in proximity to the internal carotid artery. The authors postulated, on the basis of intraoperative observations, that the infraorbital nerve (ION) is a useful surgical landmark for navigating this region; therefore, they studied the anatomy of the ION and its relationships to critical neurovascular structures and the maxillary nerve (V2) encountered in ETMAs. ⋯ Anatomical dissections of the ION and the maxillary branch of the trigeminal nerve (V2) to the cavernous sinus suggested that the ION/V2 complex has 4 distinct segments that may have implications in endoscopic approaches: 1) Segment I, the cutaneous segment of the ION and its terminal branches (5-11 branches) to the face, distal to the infraorbital foramen; 2) Segment II, the orbitomaxillary segment of the ION within the infraorbital canal from the infraorbital foramen along the infraorbital groove (length 12 ± 3.2 mm); 3) Segment III, the pterygopalatine segment within the pterygopalatine fossa, which starts at the infraorbital groove to the foramen rotundum (13 ± 2.5 mm); and 4) Segment IV, the cavernous segment from the foramen rotundum to the trigeminal ganglion (15 ± 4.1 mm), which passes in the lateral wall of the cavernous sinus. The relationship of the ION/V2 complex to the contents of the cavernous sinus, carotid artery, and pterygopalatine fossa is described in the text. CONCLUSIONS The ION/V2 complex is an easily identifiable and potentially useful surgical landmark to the foramen rotundum, cavernous sinus, carotid artery, pterygopalatine fossa, and anterolateral skull base during ETMAs.