Journal of neurosurgery
-
Journal of neurosurgery · Jun 2016
Multicenter StudyAssociation of apolipoprotein E gene polymorphism with small-vessel lesions and stroke type in moyamoya disease: a preliminary study.
OBJECT The present study was conducted to investigate whether microbleeds or microinfarcts are associated with apolipoprotein E (APOE) gene polymorphisms in patients with moyamoya disease (MMD), and if so, whetherAPOE gene polymorphisms are also associated with stroke type in patients with MMD. METHODS This cross-sectional, multicenter study included 86 consecutive patients with MMD who underwent T2*-weighted gradient echo or susceptibility-weighted MR imaging and 83 healthy control volunteers. Baseline clinical and radiological characteristics were recorded at diagnosis, and inter- and intragroup differences in the APOE genotypes were assessed. ⋯ CONCLUSIONS These preliminary results did not show a difference in APOE gene polymorphisms between patients with MMD and healthy persons. However, they imply that APOE gene polymorphisms may play certain roles in the presence of microbleeds but not microinfarcts in patients with MMD. A further confirmatory study is necessary to elucidate the effect of APOE gene polymorphisms and SVLs on the future incidence of stroke in patients with MMD.
-
Journal of neurosurgery · Jun 2016
ReviewGraph theory analysis of complex brain networks: new concepts in brain mapping applied to neurosurgery.
Neuroanatomy has entered a new era, culminating in the search for the connectome, otherwise known as the brain's wiring diagram. While this approach has led to landmark discoveries in neuroscience, potential neurosurgical applications and collaborations have been lagging. ⋯ Next they highlight selected insights into healthy brain function that have been derived from connectome analysis and illustrate how studies into normal development, cognitive function, and the effects of synthetic lesioning can be relevant to neurosurgery. Finally, they provide a précis of early applications of the connectome and related techniques to traumatic brain injury, functional neurosurgery, and neurooncology.
-
Journal of neurosurgery · Jun 2016
Sequential changes in Rotterdam CT scores related to outcomes for patients with traumatic brain injury who undergo decompressive craniectomy.
OBJECT Rotterdam CT scoring is a CT classification system for grouping patients with traumatic brain injury (TBI) based on multiple CT characteristics. This retrospective study aimed to determine the relationship between initial or preoperative Rotterdam CT scores and TBI prognosis after decompressive craniectomy (DC). METHODS The authors retrospectively reviewed the medical records of all consecutive patients who underwent DC for nonpenetrating TBI in 2 hospitals from January 2006 through December 2013. ⋯ Multivariable logistic regression analysis adjusted for established predictors of TBI outcomes showed that initial Rotterdam CT scores were significantly associated with mortality (OR 4.98, 95% CI 1.40-17.78, p = 0.01) and unfavorable outcomes (OR 3.66, 95% CI 1.29-10.39, p = 0.02) and preoperative Rotterdam CT scores were significantly associated with unfavorable outcomes (OR 15.29, 95% CI 2.50-93.53, p = 0.003). ROC curve analyses showed cutoff values for the initial Rotterdam CT score of 5.5 (area under the curve [AUC] 0.74, 95% CI 0.59-0.90, p = 0.009, sensitivity 50.0%, and specificity 88.2%) for mortality and 4.5 (AUC 0.71, 95% CI 0.56-0.86, p = 0.02, sensitivity 62.5%, and specificity 75.0%) for an unfavorable outcome and a cutoff value for the preoperative Rotterdam CT score of 4.5 (AUC 0.81, 95% CI 0.69-0.94, p < 0.001, sensitivity 90.6%, and specificity 56.2%) for an unfavorable outcome. CONCLUSIONS Assessment of changes in Rotterdam CT scores over time may serve as a prognostic indicator in TBI and can help determine which patients require DC.
-
Journal of neurosurgery · Jun 2016
Case ReportsSomatic IDH1 mutation in a pituitary adenoma of a patient with Maffucci syndrome.
Maffucci syndrome is a rare disease characterized by multiple enchondromas and soft-tissue hemangiomas. Additionally, neuroendocrine tumors including pituitary adenomas have been described in these patients. The underlying genetic etiology lies in somatic mosaicism of mutations in isocitrate dehydrogenase 1 (IDH1) or isocitrate dehydrogenase 2 (IDH2). ⋯ DNA sequencing demonstrated identical IDH1 mutations (c.394C > T) in both tumors. To the authors' knowledge, this report provides the first genetic evidence for the inclusion of pituitary adenomas among tumors characterizing Maffucci syndrome. In patients who are newly diagnosed with Maffucci syndrome, it is appropriate to monitor for development of pituitary pathology and neuroendocrine dysfunction.
-
Journal of neurosurgery · Jun 2016
Comparative StudyComparison of 7.0- and 3.0-T MRI and MRA in ischemic-type moyamoya disease: preliminary experience.
OBJECT The authors compared the image quality and diagnostic sensitivity and specificity of 7.0-T and 3.0-T MRI and time-of-flight (TOF) MR angiography (MRA) in patients with moyamoya disease (MMD). METHODS MR images of 15 patients with ischemic-type MMD (8 males, 7 females; age 13-48 years) and 13 healthy controls (7 males, 6 females; age 19-28 years) who underwent both 7.0-T and 3.0-T MRI and MRA were studied retrospectively. The main intracranial arteries were assessed by using the modified Houkin's grading system (MRA score). ⋯ Receiver operating characteristic curve analysis showed that, according to the T2 criteria, 7.0-T MRI/MRA was more sensitive (sensitivity 1.000; specificity 0.933) than 3.0-T MRI/MRA (sensitivity 0.692; specificity 0.933) in diagnosing MMD; based on the TOF criteria, 7.0-T MRI/MRA was more sensitive (1.000 vs 0.733, respectively) and more specific (1.000 vs 0.923, respectively) than 3.0-T MRI/MRA. CONCLUSIONS Compared with 3.0-T MRI/MRA, 7.0-T MRI/MRA detected and delineated MMVs more clearly and provided higher diagnostic sensitivity and specificity, although it did not show significant improvement in depicting main intracranial arteries. The authors speculate that 7.0-T MRI/MRA is a promising technique in the diagnosis of MMD because it is noninvasive compared with conventional angiography and it is more sensitive than 3.0-T MRI/MRA.