Journal of neurosurgery
-
Journal of neurosurgery · Nov 2022
Microsurgical anatomy of the dorsal clinoidal space: implications for endoscopic endonasal parasellar surgery.
The clinoidal venous space dorsal to the internal carotid artery (ICA) has not been well studied given its inaccessibility due to obstruction by the ICA during transcranial surgery. The evolution of endoscopic endonasal surgery has provided a new perspective into the clinoidal space and a new route for paraclinoidal lesions. Understanding the dorsal clinoidal space (DCS) is vital in planning and performing endoscopic endonasal surgery in the parasellar region. A detailed and precise description of the DCS from the endonasal perspective has not yet been provided. The authors' goal in this study was to delineate the microsurgical anatomy of the DCS from an endoscopic endonasal perspective, emphasizing its surgical implications when treating invasive pituitary adenomas and other parasellar lesions. ⋯ This report provides important anatomical descriptions of the DCS from endoscopic endonasal and transcranial perspectives that may facilitate the space's safe exposure for the removal of invasive adenomas, increasing total resection rates and minimizing the risk of injury to neurovascular structures.
-
Journal of neurosurgery · Nov 2022
Predictive value of magnetoencephalography in guiding the intracranial implant strategy for intractable epilepsy.
Magnetoencephalography (MEG) is a useful component of the presurgical evaluation of patients with epilepsy. Due to its high spatiotemporal resolution, MEG often provides additional information to the clinician when forming hypotheses about the epileptogenic zone (EZ). Because of the increasing utilization of stereo-electroencephalography (sEEG), MEG clusters are used to guide sEEG electrode targeting with increasing frequency. However, there are no predefined features of an MEG cluster that predict ictal activity. This study aims to determine which MEG cluster characteristics are predictive of the EZ. ⋯ MEG clusters with approximately 14 or more dipoles are strong predictors of ictal activity and may be useful in the preoperative planning of sEEG implantation.