Journal of neurosurgery
-
Journal of neurosurgery · May 2022
Cutoff values for the best management strategy for magnetic resonance-guided focused ultrasound ablation for essential tremor.
The efficacy of magnetic resonance-guided focused ultrasound (MRgFUS) ablation for essential tremor (ET) is well known; however, no prognostic factors have been established. The authors aimed to retrospectively investigate MRgFUS ablation outcomes and associated factors and to define the cutoff values for each prognostic factor. ⋯ ACPC = anterior commissure-posterior commissure; AP = anterior to posterior; CRST = Clinical Rating Scale for Tremor; ET = essential tremor; MRgFUS = magnetic resonance-guided focused ultrasound; PC = posterior commissure; PSA = posterior subthalamic area; RL = right to left; ROC = receiver operating characteristic; SDR = skull density ratio; SI = superior to inferior; T2WI = T2-weighted imaging; VIM = ventral intermediate nucleus.
-
Journal of neurosurgery · May 2022
Judith Balkányi-Lepintre (1912-1982): first woman neurosurgeon, first woman war neurosurgeon, and first woman pediatric neurosurgeon in France.
Recently, a series of historical reports portrayed the first women neurosurgeons in various countries. One such woman, a pioneer on many levels, remained unrecognized: Judith Balkányi-Lepintre. She was the first woman neurosurgeon in France, the first woman war neurosurgeon for the French Army, and the first woman pediatric neurosurgeon in France. ⋯ After the war, she returned to work at La Pitié Hospital. In 1947, she defended her doctoral thesis, "Treatment of cranio-cerebral wounds by projectiles and their early complications." Soon thereafter, she joined Europe's first dedicated children's hospital, Hôpital Necker-Enfants Malades in Paris, and contributed to the establishment of pediatric neurosurgery in France. She remained clinically and academically active at Necker until her death in 1982 but was never promoted.
-
Journal of neurosurgery · May 2022
External validation of the Lawton brainstem cavernous malformation grading system in a cohort of 277 microsurgical patients.
The brainstem cavernous malformation (BSCM) grading system predicts neurological outcomes associated with microsurgical resection and assists neurosurgeons in selecting patients for treatment. The predictive accuracy of the BSCM grading system should be validated in a large cohort from high-volume centers to generalize its use. ⋯ This study validates the BSCM grading system in a large cohort of patients from two high-volume surgeons. BSCM grade predicted neurological outcomes with accuracy comparable to that of other grading systems in widespread use. The BSCM grading system establishes categories of low-, intermediate-, and high-grade BSCMs and a boundary or cutoff for surgery at BSCM grade V. BSCM grading guides the analysis of a particular patient's condition, but treatment recommendations must be individualized, and neurosurgeons must calibrate BSCM grading to their own outcome results, unique abilities, and practices.
-
Journal of neurosurgery · May 2022
Minocycline decreases blood-brain barrier permeability following aneurysmal subarachnoid hemorrhage: a randomized, double-blind, controlled trial.
Aneurysmal subarachnoid hemorrhage (aSAH)-induced vasospasm is linked to increased inflammatory cell trafficking across a permeable blood-brain barrier (BBB). Elevations in serum levels of matrix metalloprotease 9 (MMP9), a BBB structural protein, have been implicated in the pathogenesis of vasospasm onset. Minocycline is a potent inhibitor of MMP9. The authors sought to detect an effect of minocycline on BBB permeability following aSAH. ⋯ Minocycline at high doses is well tolerated in the ruptured cerebral aneurysm population. Minocycline curtails breakdown of the BBB following aSAH as evidenced by lower permeability indices, though minocycline did not significantly alter serum MMP9 levels. Larger randomized clinical trials are needed to assess minocycline as a neuroprotectant against aSAH-induced vasospasm. Clinical trial registration no.: NCT04876638 (clinicaltrials.gov).
-
Journal of neurosurgery · May 2022
Recovering the regenerative potential in chronically injured nerves by using conditioning electrical stimulation.
Chronically injured nerves pose a significant clinical challenge despite surgical management. There is no clinically feasible perioperative technique to upregulate a proregenerative environment in a chronic nerve injury. Conditioning electrical stimulation (CES) significantly improves sensorimotor recovery following acute nerve injury to the tibial and common fibular nerves. The authors' objective was to determine if CES could foster a proregenerative environment following chronically injured nerve reconstruction. ⋯ Regeneration following chronic axotomy is impaired due to downregulation of the proregenerative environment generated following nerve injury. CES delivered to a chronically injured nerve influences the cell body and the nerve to re-upregulate an environment that accelerates axon regeneration, resulting in significant improvements in sensory and motor functional recovery. Percutaneous CES may be a preoperative strategy to significantly improve outcomes for patients undergoing delayed nerve reconstruction.