Journal of neurosurgery
-
Journal of neurosurgery · Mar 2023
Stereotactic radiosurgery for intermediate- and high-grade arteriovenous malformations: outcomes stratified by the supplemented Spetzler-Martin grading system.
The supplemented Spetzler-Martin (Supp-SM) grading system was developed to improve the predictive accuracy of surgical risk for patients with brain arteriovenous malformations (AVMs). The aim of this study was to apply the Supp-SM grading system to patients having stereotactic radiosurgery (SRS) for Spetzler-Martin (SM) intermediate- (grade III) or high-grade (grade IV-V) AVMs to enable comparison with published microsurgical series. ⋯ The Supp-SM grading system was not predictive of outcomes after SRS of intermediate- or high-grade AVM. In a cohort that included a high percentage (47%) of "inoperable" AVMs according to Supp-SM grade (≥ 7), most patients had obliteration after SRS, although there was a high risk of neurological decline.
-
Journal of neurosurgery · Mar 2023
Seven bypasses simulation set: description and validity assessment of novel models for microneurosurgical training.
Microsurgical training remains indispensable to master cerebrovascular bypass procedures, but simulation models for training that accurately replicate microanastomosis in narrow, deep-operating corridors are lacking. Seven simulation bypass scenarios were developed that included head models in various surgical positions with premade approaches, simulating the restrictions of the surgical corridors and hand positions for microvascular bypass training. This study describes these models and assesses their validity. ⋯ The 7 bypasses simulation set includes novel models that effectively simulate surgical scenarios of a bypass within distinct deep anatomical corridors, as well as hand and operator positions. These models use artificial materials, are reusable, and can be implemented for personal training and during microsurgical courses.
-
Journal of neurosurgery · Mar 2023
Modern intracranial electroencephalography for epilepsy localization with combined subdural grid and depth electrodes with low and improved hemorrhagic complication rates.
Recent trends have moved from subdural grid electrocorticography (ECoG) recordings toward stereo-electroencephalography (SEEG) depth electrodes for intracranial localization of seizures, in part because of perceived morbidity from subdural grid and strip electrodes. For invasive epilepsy monitoring, the authors describe the outcomes of a hybrid approach, whereby patients receive a combination of subdural grids, strips, and frameless stereotactic depth electrode implantations through a craniotomy. Evolution of surgical techniques was employed to reduce complications. In this study, the authors review the surgical hemorrhage and functional outcomes of this hybrid approach. ⋯ In the authors' institutional experience, craniotomy-based subdural and depth electrode implantation was associated with low hemorrhage rates and no permanent morbidity. The rate of hemorrhage can be nearly eliminated with surgical experience and specific techniques. The decision to use subdural electrodes or SEEG should be tailored to the patient's unique pathology and surgeon experience.
-
Journal of neurosurgery · Mar 2023
Long noncoding RNA profile of the intracranial artery in patients with moyamoya disease.
Moyamoya disease (MMD) is a rare cerebrovascular disease characterized by progressive stenosis of the internal carotid artery (ICA) and secondary formation of collateral vessels. Revascularization surgery is performed in patients with MMD to prevent stroke; however, the pathogenesis of MMD remains unknown. Recently, long noncoding RNAs (lncRNAs) have been found to play a key role in gene regulation and are implicated in various vascular diseases. However, the lncRNA expression profile in MMD lesions has not been investigated. In this study the authors aimed to determine the characteristics of lncRNA expression in MMD lesions. ⋯ The profile of lncRNA expression in MMD lesions was different from that in the normal cerebral artery, and differentially expressed lncRNAs were identified. This study provides new insights into the pathophysiology of MMD.
-
Journal of neurosurgery · Mar 2023
Arousal and salience network connectivity alterations in surgical temporal lobe epilepsy.
It is poorly understood why patients with mesial temporal lobe epilepsy (TLE) have cognitive deficits and brain network changes that extend beyond the temporal lobe, including altered extratemporal intrinsic connectivity networks (ICNs). However, subcortical arousal structures project broadly to the neocortex, are affected by TLE, and thus may contribute to these widespread network effects. The authors' objective was to examine functional connectivity (FC) patterns between subcortical arousal structures and neocortical ICNs, possible neurocognitive relationships, and FC changes after epilepsy surgery. ⋯ FC abnormalities between subcortical arousal structures and ICNs, such as the salience network, may be related to certain neurocognitive deficits in TLE patients. Although TLE patients demonstrated vigilance abnormalities, baseline FC perturbations between the arousal and salience networks are unlikely to be driven solely by alertness level, and some may improve after surgery. Examination of the arousal network and ICN disturbances may improve our understanding of the downstream clinical effects of TLE.