Biochemical Society transactions
-
In neuronal circuits, memory storage depends on activity-dependent modifications in synaptic efficacy, such as LTD (long-term depression) and LTP (long-term potentiation), the two main forms of synaptic plasticity in the brain. In the nucleus striatum, LTD and LTP represent key cellular substrates for adaptive motor control and procedural memory. It has been suggested that their impairment could account for the onset and progression of motor symptoms of PD (Parkinson's disease), a neurodegenerative disorder characterized by the massive degeneration of dopaminergic neurons projecting to the striatum. ⋯ In those animals experiencing AIMs, synaptic plasticity is altered and is paralleled by modifications in the postsynaptic compartment. In particular, dysfunctions in trafficking and subunit composition of NMDARs [NMDA (N-methyl-D-aspartate) receptors] on striatal efferent neurons result from chronic non-physiological dopaminergic stimulation and contribute to the pathogenesis of dyskinesias. According to these pathophysiological concepts, therapeutic strategies targeting signalling proteins coupled to NMDARs within striatal spiny neurons could represent new pharmaceutical interventions for PD and L-dopa-induced dyskinesia.
-
Biochem. Soc. Trans. · Aug 2009
ReviewAccelerated lung aging: a novel pathogenic mechanism of chronic obstructive pulmonary disease (COPD).
An enhanced or abnormal inflammatory response to the lungs to inhaled particles and gases, usually from cigarette smoke, is considered to be a general pathogenic mechanism in COPD (chronic obstructive pulmonary disease). Activation of leucocytes and the development of oxidant-antioxidant and protease-anti-protease imbalances are thought to be important aspects of this enhanced inflammatory response to cigarette smoke. The mechanisms involved in the perpetuation of the inflammatory response in the lungs in patients who develop COPD, even after smoking cessation, are not fully established and are key to our understanding of the pathogenic mechanisms in COPD and may be important for the development of new therapies. ⋯ There is also evidence that anti-aging molecules such as histone deacetylases and sirtuins are decreased in the lungs of COPD patients, compared with smokers without COPD, resulting in enhanced inflammation and further progression of COPD. The processes involved in accelerated aging may provide novel targets for therapy in COPD. The present article reviews the evidence for accelerated aging as a mechanism in the pathogenesis of COPD.
-
Failure in the regulation of mTOR (mammalian target of rapamycin) appears to be critical to the pathogenesis of the inherited disorder tuberous sclerosis and the related lung disease LAM (lymphangioleiomyomatosis). Both diseases are caused by mutations of TSC1 or TSC2 (TSC is tuberous sclerosis complex) that impair GAP (GTPase-activating protein) activity of the TSC1-TSC2 complex for Rheb, leading to inappropriate activity of signalling downstream of mTORC1 (mTOR complex 1). mTOR inhibitors are already used in a variety of clinical settings including as immunosuppressants, anticancer agents and antiproliferative agents in drug-eluting coronary artery stents. They also represent candidate therapies directed to the underlying molecular pathology in tuberous sclerosis and LAM. ⋯ An important, although variable, feature of the tuberous sclerosis phenotype is learning difficulty. Recent studies in mouse models carrying heterozygous Tsc2 mutations demonstrated improvement in memory and learning deficits following treatment with rapamycin. These promising pre-clinical and early human trials are being followed by larger-scale randomized control trials of mTOR inhibitors for treatment of renal, lung and brain manifestations of TSC1- and TSC2-associated disease.
-
A large body of evidence indicates that measurement of F2-isoprostanes, specific prostaglandin F2-like compounds derived from the non-enzymatic peroxidation of arachidonic acid, is a reliable biomarker of oxidant stress in the human body. Since the discovery of F2-isoprostanes in the early 1990s, a variety of analytical approaches has been introduced for the quantification of these novel compounds. The aim of the present review is to shed light on the available gas chromatographic-mass spectrometric assays for the measurement of plasma or urinary F2-isoprostanes and to highlight a number of issues which need to be addressed in order to implement F2-isoprostane measurement as a gold-standard biomarker of oxidative stress in biological samples.
-
Biochem. Soc. Trans. · Nov 2007
ReviewCalcium in the heart: when it's good, it's very very good, but when it's bad, it's horrid.
Ca(2+) increases in the heart control both contraction and transcription. To accommodate a short-term increased cardiovascular demand, neurohormonal modulators acting on the cardiac pacemaker and individual myocytes induce an increase in frequency and magnitude of myocyte contraction respectively. ⋯ As a result of disease, however, hypertrophy progresses to a decompensated state and Ca(2+) signalling capacity and cardiac output are reduced. Here, the role that Ca(2+) plays in the induction of hypertrophy as well as the impact that cardiac hypertrophy and failure has on Ca(2+) fluxes will be discussed.