Pain
-
Clinical Trial
An experimental study of viscero-visceral hyperalgesia using an ultrasound-based multimodal sensory testing approach.
Widespread visceral hypersensitivity and the overlap of symptom complexes observed in functional gastrointestinal disorders may be related to central sensitization and neuroplastic changes. A multimodal and multi-segmental model was developed to evaluate viscero-visceral hyperalgesia induced by experimental esophageal sensitization in healthy volunteers. Twelve healthy subjects were studied using a double-blinded, placebo-controlled design. ⋯ The present method demonstrated a new approach to assess multimodal sensitivity to experimental sensitization of the esophagus and related viscero-visceral hyperalgesia. Central mechanisms can explain the remote hyperalgesia to mechanical visceral stimulation and the increase in referred pain areas. The present method may be used to explore pathophysiology and pharmacological interventions in patients with visceral hypersensitivity.
-
Chronic muscle pain is common and often difficult to treat. In this study, we further characterize a model of chronic muscle pain induced by repeated intramuscular injection of acidic saline. Two injections of acid into muscle separated by 5 days result in secondary mechanical hyperalgesia that lasts for up to 4 weeks. ⋯ The second intramuscular injection evoked a calcium-dependent increase in both spinal glutamate and aspartate concentrations. Glutamate concentrations within the dorsal horn were also increased 1 week after the second acid injection. Our data suggest increased release of spinal EAAs in the dorsal horn contributes to the development and maintenance of hyperalgesia.
-
We used a photochemical method to generate a partial ischemic injury to the infraorbital branch of the trigeminal nerve in rats. Following injury, rats developed a bilateral persistent hypersensitivity to mechanical stimulation in the territory innervated by the infraorbital nerve. In addition, spread of mechanical hypersensitivity beyond the facial region was noted. ⋯ Previous findings have shown that injury to the trigeminal nerve branches may elicit responses that differ from those of segmental spinal nerves. Despite this we conclude that the key sodium channel regulations that are reported as consequences of nerve damage in the dorsal root ganglia seem to appear also in the trigeminal ganglion. Thus, novel analgesic drugs designed to target the sodium channel subtypes involved could be of use for the treatment of orofacial pain.
-
Acrylamide was intraperitoneally administered to male Sprague-Dawley rats at four different doses (5, 10, 20 and 30 mg/kg) three times a week for 5 consecutive weeks. Because of motor dysfunction, the 30 mg/kg dose was not used for behavioral pain tests. Clinical status remained good throughout the experiment and no motor deficit was observed at the other doses. ⋯ Mechanical and thermal hyperalgesia appeared after higher cumulative doses (70-280 mg/kg), except for cold (4 degrees C) hyperalgesia (20-80 mg/kg). All the modifications persisted throughout all study, except the mechanical hyperalgia. All the cumulative doses tested were lower than those generally reported to induce motor dysfunction (CD>250 mg/kg), confirming that CD may be considered to be a suitable index in assessing neurological signs and suggesting that early detection of acrylamide neurotoxicity would be possible using the sensory tests, especially those for detecting allodynia thresholds.